无监督学习Principal Component Analysis(PCA)精简高维数据

目录

介绍

一、PCA之前 

二、PCA之后 

介绍

Principal Component Analysis (PCA) 是一种常用的数据降维和特征提取技术。PCA通过线性变换将高维数据映射到低维空间,从而得到数据的主要特征。PCA的目标是找到一个正交基的集合,使得将数据投影到这些基上时,能够保留尽可能多的数据信息。每个正交基称为一个主成分,它的重要性通过其对应的特征值来衡量。PCA通过计算特征值和特征向量,找到数据中最重要的特征,将数据投影到这些特征上,从而达到降维和提取主要特征的目的。通过PCA可以减少数据的维度,并且可以保留数据的主要特征,以便于后续的数据分析和建模。

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set(style='white')
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
from sklearn import decomposition
from sklearn import datasets
from mpl_toolkits.mplot3d import Axes3D# Loading the dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target
fig = plt.figure(1, figsize=(6, 5))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)plt.cla()for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]:ax.text3D(X[y == label, 0].mean(),X[y == label, 1].mean() + 1.5,X[y == label, 2].mean(), name,horizontalalignment='center',bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))
# Change the order of labels, so that they match
y_clr = np.choose(y, [1, 2, 0]).astype(np.float64)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y_clr, cmap=plt.cm.nipy_spectral)ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
ax.zaxis.set_ticklabels([]);

一、PCA之前 

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, roc_auc_score# Train, test splits
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, stratify=y, random_state=42)# Decision trees with depth = 2
clf = DecisionTreeClassifier(max_depth=2, random_state=42)
clf.fit(X_train, y_train)
preds = clf.predict_proba(X_test)
print('Accuracy: {:.5f}'.format(accuracy_score(y_test, preds.argmax(axis=1))))#结果:Accuracy: 0.88889

二、PCA之后 

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(X)
data_rescaled = scaler.fit_transform(X)
data_rescaled.shape
# Using PCA from sklearn PCA
pca = decomposition.PCA(n_components=2)pca.fit(data_rescaled)
X_pca = pca.transform(data_rescaled)# Plotting the results of PCA
plt.plot(X_pca[y == 0, 0], X_pca[y == 0, 1], 'bo', label='Setosa')
plt.plot(X_pca[y == 1, 0], X_pca[y == 1, 1], 'go', label='Versicolour')
plt.plot(X_pca[y == 2, 0], X_pca[y == 2, 1], 'ro', label='Virginica')
plt.legend(loc=0);

# Test-train split and apply PCA
X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=.3, stratify=y, random_state=42)clf = DecisionTreeClassifier(max_depth=2, random_state=42)
clf.fit(X_train, y_train)
preds = clf.predict_proba(X_test)
print('Accuracy: {:.5f}'.format(accuracy_score(y_test, preds.argmax(axis=1))))#结果:Accuracy: 0.91111
for i, component in enumerate(pca.components_):print("{} component: {}% of initial variance".format(i + 1, round(100 * pca.explained_variance_ratio_[i], 2)))print(" + ".join("%.3f x %s" % (value, name)for value, name in zip(component,iris.feature_names)))'''结果:四维数据降为两维
1 component: 84.14% of initial variance
0.425 x sepal length (cm) + -0.151 x sepal width (cm) + 0.616 x petal length (cm) + 0.646 x petal width (cm)
2 component: 11.75% of initial variance
0.423 x sepal length (cm) + 0.904 x sepal width (cm) + -0.060 x petal length (cm) + -0.010 x petal width (cm)
'''pca.explained_variance_ratio_
#结果:array([0.84136038, 0.11751808])
plt.figure(figsize=(10,7))
plt.plot(np.cumsum(pca.explained_variance_ratio_), color='k', lw=2)
plt.xlabel('Number of components')
plt.ylabel('Total explained variance')
plt.xlim(0, 4)
#plt.yticks(np.arange(0.8, 1.1, 0.1))
plt.axvline(21, c='b')
plt.axhline(0.95, c='r')
plt.show();

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/236026.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言小游戏】贪吃蛇

文章目录 1.引言2.运行图2.涉及知识3 Windows API3.1 控制台3.2 控制台屏幕坐标3.3 操作句柄3.4 控制台屏幕光标3.5 监视按键 4. 设计说明5. 完整代码 1.引言 使⽤C语⾔在Windows环境的控制台中模拟实现经典⼩游戏贪吃蛇 实现基本的功能: 贪吃蛇地图绘制蛇吃⻝物的…

vue简体繁体互转无需做字库

第一种方法 vue-i18n 需要自己写字库库很麻烦,而且不支持后端传值 第二种 opencc 这个库前端去使用的时候 数据较多的情况非常慢.影响使用 第三种 language-hk-loader npm i language-hk-loader 从其他博客中看到的一种,很方便不需要写字库,但是在打包的时候去整体的去翻译…

网络层详解

目录 前言 一、IP协议 1、IP协议报头 2、协议字段理解 (1)4位版本 (2)4位首部长度 (3)8位服务类型 (4)16位总长度 (5)标识、标志与片偏移 &#xf…

2024-01-11 部署Stable Diffusion遇挫记

点击 <C 语言编程核心突破> 快速C语言入门 部署Stable Diffusion遇挫记 前言一、一如既往的GitHub部署二、使用的感受总结 create by Stable Diffusion; prompt: fire water llama 前言 要解决问题: 由于近期的努力, 已经实现语音转文字模型, 通用chat迷你大模型的本地…

后端程序员开发win小工具(未完待续)

github&#xff1a;https://gitee.com/forgot940629/win-tool-demo 本地启动&#xff0c;查看http://127.0.0.1:8080/form 场景 在日常工作中可能需要后端开发者开发一些辅助工具。这些辅助工具通常希望能想其他软件一样在桌面系统运行&#xff0c;并且有一些桌面应用的基本…

dbeaver连接人大金仓报错 can‘t load driver class ‘com.kingbase8.Driver;‘

dbeaver可以连接很多数据库&#xff0c;设置dbeaver连接人大金仓&#xff0c;下载安装完成后&#xff0c;需要自行配置人大金仓的驱动&#xff0c;否则无法连接数据库。 一、dbeaver 下载 dbeaver 下载地址&#xff1a;https://dbeaver.io/download/ 二、查找人大金仓驱动 首…

【开源项目】轻量元数据管理解决方案——Marquez

大家好&#xff0c;我是独孤风。 又到了本周的开源项目推荐。最近推荐的元数据管理项目很多&#xff0c;但是很多元数据管理平台的功能复杂难用。 那么有没有轻量一点的元数据管理项目呢&#xff1f; 今天为大家推荐的开源项目&#xff0c;就是一个轻量级的元数据管理工具。虽然…

Linux动态分配IP与正向解析DNS

目录 一、DHCP分配 1. 动态分配 1.1 服务端服务安装 1.2 修改服务端dhcp配置 1.3 修改客户端dhcp&#xff0c;重启查询网卡信息 2. 根据mac固定分配 2.1 修改服务器端dhcp服务配置 2.2 客户端自动获取&#xff0c;查看网卡信息 二、时间同步 1. 手动同步 2. 自动同…

使用numpy处理图片——图片拼接

大纲 左右拼接上下拼接 在《使用numpy处理图片——图片切割》一文中&#xff0c;我们介绍了如何使用numpy将一张图片切割成4部分。本文我们将反其道而行之&#xff0c;将4张图片拼接成1张图片。 基本的思路就是先用两张图以左右结构拼接成上部&#xff0c;另外两张图也以左右拼…

Win2008R2上RedisDesktopManager 黑屏

问题&#xff1a; 运行发现右侧显示缓存信息的部分是黑屏。 解决方式&#xff1a; 管理工具->远程桌面服务->远程桌面会话主机配置->RDP-TCP->属性->客户端设置->颜色深度->限制最大颜色深度,将16位改为32位

新能源时代-电动汽车充电桩设备建设及运维平台搭建

安科瑞 崔丽洁 摘要&#xff1a;在社会经济发展的新时期&#xff0c;我国城市化的水平也在随之不断的提高&#xff0c;使我国制造业迅速崛起&#xff0c;并加剧了该行业的竞争力&#xff0c;要想使企业在竞争中占据有力的位置&#xff0c;企业就要顺应时代发展的潮流&#xff0…

Thumbnail AI:让图片处理更智能

一、产品介绍 Thumbnail AI是一款基于人工智能技术的图片处理软件&#xff0c;能够快速、准确地生成各种尺寸的缩略图。这款软件非常适合用于网站建设、广告设计、电商等领域&#xff0c;能够大大提高图片处理效率。 二、应用场景 网站建设&#xff1a;在网站建设中&#xff…

深度学习”和“多层神经网络”的区别

在讨论深度学习与多层神经网络之间的差异时&#xff0c;我们必须首先理解它们各自是什么以及它们在计算机科学和人工智能领域的角色。 深度学习是一种机器学习的子集&#xff0c;它使用了人工神经网络的架构。深度学习的核心思想是模拟人脑神经元的工作方式&#xff0c;以建立…

SpringBoot 把PageHelper分页信息返回给前端

第1步&#xff1a;定义线程容器收纳HttpHeaders和HttpStatus import org.springframework.http.HttpHeaders; import org.springframework.http.HttpStatus;public class ResponseUtils {private static ThreadLocal<HttpHeaders> ThreadLocalHeaders new InheritableT…

R730服务器做了raid的硬盘,插在R720上面可以用吗?

环境 戴尔R720 戴尔R730 问题描述 R730服务器做了raid的硬盘&#xff0c;插在R720上面可以用吗&#xff1f; 解决方案 1.直接在 R730服务器做了raid的硬盘&#xff0c;卸下来在插在r720上面使用 &#xff0c;读不到硬盘 2.前往R730服务器上面&#xff0c;去清除RAID配置的…

一个完整的流程表单流转

1.写在前面 一个完整的流程表单审批&#xff08;起表单-->各环节审批-->回退-->重新审批-->完成&#xff09;&#xff0c;前端由Vue2jsElement UI升级为Vue3tsElement Plus&#xff0c;后端流程框架使用Flowable&#xff0c;项目参考了ruoyi-vue-pro(https://gite…

Hibernate实战之操作MySQL数据库(2024-1-8)

Hibernate实战之操作MySQL数据库 2024.1.8 前提环境&#xff08;JavaMySQLNavicatVS Code&#xff09;1、Hibernate简介1.1 了解HQL 2、MySQL数据库建表2.1 编写SQL脚本2.2 MySQL执行脚本 3、Java操作MySQL实例&#xff08;Hibernate&#xff09;3.1 准备依赖的第三方jar包3.2 …

UI自动化测试工具对企业具有重要意义

随着软件行业的不断发展&#xff0c;企业对高质量、高效率的软件交付有着越来越高的要求。在这个背景下&#xff0c;UI自动化测试工具成为了企业不可或缺的一部分。以下是UI自动化测试工具对企业的重要作用&#xff1a; 1. 提高软件质量 UI自动化测试工具能够模拟用户的操作&am…

FlinkAPI开发之自定义函数UDF

案例用到的测试数据请参考文章&#xff1a; Flink自定义Source模拟数据流 原文链接&#xff1a;https://blog.csdn.net/m0_52606060/article/details/135436048 概述 用户自定义函数&#xff08;user-defined function&#xff0c;UDF&#xff09;&#xff0c;即用户可以根据…

【PaperReading】4. TAP

Category Content 论文题目 Tokenize Anything via Prompting 作者 Ting Pan, Lulu Tang, Xinlong Wang, Shiguang Shan (Beijing Academy of Artificial Intelligence) 发表年份 2023 摘要 提出了一个统一的可提示模型&#xff0c;能够同时对任何事物进行分割、识别和…