【python】爬取豆瓣电影排行榜Top250存储到Excel文件中【附源码】

英杰社区icon-default.png?t=N7T8https://bbs.csdn.net/topics/617804998

一、背景     

   近年来,Python在数据爬取和处理方面的应用越来越广泛。本文将介绍一个基于Python的爬虫程

序,用于抓取豆瓣电影Top250的相关信息,并将其保存为Excel文件。

        程序包含以下几个部分:

           导入模块:程序导入了 BeautifulSoup、re、urllib.request、urllib.error、xlwt等模块。

        定义函数:

  • geturl(url):接收一个URL参数,返回该URL页面内容。
  • getdata(baseurl):接收一个基础URL参数,遍历每一页的URL,获取电影信息数据,以列表形式返回。
  • savedata(datalist,savepath):接收电影信息数据和保存路径参数,将数据保存到Excel文件中。

二、导入必要的模块:

       代码首先导入了需要使用的模块:requests、lxml和csv。

import requests
from lxml import etree
import csv

        如果出现模块报错

c124a1693bfc457ba1f2909ee9d299fc.png

        进入控制台输入:建议使用国内镜像源

pip install 模块名称 -i https://mirrors.aliyun.com/pypi/simple

         我大致罗列了以下几种国内镜像源:

清华大学
https://pypi.tuna.tsinghua.edu.cn/simple阿里云
https://mirrors.aliyun.com/pypi/simple/豆瓣
https://pypi.douban.com/simple/ 百度云
https://mirror.baidu.com/pypi/simple/中科大
https://pypi.mirrors.ustc.edu.cn/simple/华为云
https://mirrors.huaweicloud.com/repository/pypi/simple/腾讯云
https://mirrors.cloud.tencent.com/pypi/simple/

    

 三、定义了函数来解析每个电影的信息:

        设置了请求头部信息,以模拟浏览器的请求,函数返回响应数据的JSON格式内容。

def getSource(url):# 反爬 填写headers请求头headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36'}response = requests.get(url, headers=headers)# 防止出现乱码response.encoding = 'utf-8'# print(response.text)return response.text

        如何获取请求头:

        火狐浏览器:

  1. 打开目标网页并右键点击页面空白处。
  2. 选择“检查元素”选项,或按下快捷键Ctrl + Shift + C(Windows)
  3. 在开发者工具窗口中,切换到“网络”选项卡。
  4. 刷新页面以捕获所有的网络请求。
  5. 在请求列表中选择您感兴趣的请求。
  6. 在右侧的“请求标头”或“Request Headers”部分,即可找到请求头信息。

     将以下请求头信息复制出来即可

cb3f2b1cef914937a402d034c348f8ef.png

 四、源代码:

        该爬虫程序使用了Python的第三方库BeautifulSoup和正则表达式模块,通过解析HTML页面并进行匹配,提取了电影详情链接、图片链接、影片中文名、影片外国名、评分、评价数、概述以及相关信息等数据,最后将这些数据保存到Excel文件中。

0efdb231219647c6988e4032f0cb1c95.png

from bs4 import BeautifulSoup
import  re  #正则表达式,进行文字匹配
import urllib.request,urllib.error #指定URL,获取网页数据
import xlwt  #进行excel操作def main():baseurl = "https://movie.douban.com/top250?start="datalist= getdata(baseurl)savepath = ".\\豆瓣电影top250.xls"savedata(datalist,savepath)#compile返回的是匹配到的模式对象
findLink = re.compile(r'<a href="(.*?)">')  # 正则表达式模式的匹配,影片详情
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)  # re.S让换行符包含在字符中,图片信息
findTitle = re.compile(r'<span class="title">(.*)</span>')  # 影片片名
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')  # 找到评分
findJudge = re.compile(r'<span>(\d*)人评价</span>')  # 找到评价人数 #\d表示数字
findInq = re.compile(r'<span class="inq">(.*)</span>')  # 找到概况
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)  # 找到影片的相关内容,如导演,演员等##获取网页数据
def  getdata(baseurl):datalist=[]for i in range(0,10):url = baseurl+str(i*25)     ##豆瓣页面上一共有十页信息,一页爬取完成后继续下一页html = geturl(url)soup = BeautifulSoup(html,"html.parser") #构建了一个BeautifulSoup类型的对象soup,是解析html的for item in soup.find_all("div",class_='item'): ##find_all返回的是一个列表data=[]  #保存HTML中一部电影的所有信息item = str(item) ##需要先转换为字符串findall才能进行搜索link = re.findall(findLink,item)[0]  ##findall返回的是列表,索引只将值赋值data.append(link)imgSrc = re.findall(findImgSrc, item)[0]data.append(imgSrc)titles=re.findall(findTitle,item)  ##有的影片只有一个中文名,有的有中文和英文if(len(titles)==2):onetitle = titles[0]data.append(onetitle)twotitle = titles[1].replace("/","")#去掉无关的符号data.append(twotitle)else:data.append(titles)data.append(" ")  ##将下一个值空出来rating = re.findall(findRating, item)[0]  # 添加评分data.append(rating)judgeNum = re.findall(findJudge, item)[0]  # 添加评价人数data.append(judgeNum)inq = re.findall(findInq, item)  # 添加概述if len(inq) != 0:inq = inq[0].replace("。", "")data.append(inq)else:data.append(" ")bd = re.findall(findBd, item)[0]bd = re.sub('<br(\s+)?/>(\s+)?', " ", bd)bd = re.sub('/', " ", bd)data.append(bd.strip())  # 去掉前后的空格datalist.append(data)return  datalist##保存数据
def  savedata(datalist,savepath):workbook = xlwt.Workbook(encoding="utf-8",style_compression=0) ##style_compression=0不压缩worksheet = workbook.add_sheet("豆瓣电影top250",cell_overwrite_ok=True) #cell_overwrite_ok=True再次写入数据覆盖column = ("电影详情链接", "图片链接", "影片中文名", "影片外国名", "评分", "评价数", "概况", "相关信息")  ##execl项目栏for i in range(0,8):worksheet.write(0,i,column[i]) #将column[i]的内容保存在第0行,第i列for i in range(0,250):data = datalist[i]for j in range(0,8):worksheet.write(i+1,j,data[j])workbook.save(savepath)##爬取网页
def geturl(url):head = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) ""AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36"}req = urllib.request.Request(url,headers=head)try:   ##异常检测response = urllib.request.urlopen(req)html = response.read().decode("utf-8")except urllib.error.URLError as e:if hasattr(e,"code"):    ##如果错误中有这个属性的话print(e.code)if hasattr(e,"reason"):print(e.reason)return htmlif __name__ == '__main__':main()print("爬取成功!!!")

五、详解代码

        导入所需模块,包括`BeautifulSoup`、`re`、`urllib`和`xlwt`。

from bs4 import BeautifulSoup
import  re  # 正则表达式,进行文字匹配
import urllib.request,urllib.error  # 指定URL,获取网页数据
import xlwt  # 进行excel操作

        主函数,主要包含三个步骤:获取数据、保存数据和打印成功信息。

def main():baseurl = "https://movie.douban.com/top250?start="datalist = getdata(baseurl)savepath = ".\\豆瓣电影top250.xls"savedata(datalist, savepath)

        这里使用正则表达式对html页面进行匹配,获取需要的信息,返回的是匹配到的模式对象。 


##compile返回的是匹配到的模式对象
findLink = re.compile(r'<a href="(.*?)">')  # 正则表达式模式的匹配,影片详情
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)  # re.S让换行符包含在字符中,图片信息
findTitle = re.compile(r'<span class="title">(.*)</span>')  # 影片片名
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')  # 找到评分
findJudge = re.compile(r'<span>(\d*)人评价</span>')  # 找到评价人数 #\d表示数字
findInq = re.compile(r'<span class="inq">(.*)</span>')  # 找到概况
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)  # 找到影片的相关内容,如导演,演员等

获取网页数据的函数,包括以下步骤:
1. 循环10次,依次爬取不同页面的信息;
2. 使用`urllib`获取html页面;
3. 使用`BeautifulSoup`解析页面;
4. 遍历每个div标签,即每一部电影;
5. 对每个电影信息进行匹配,使用正则表达式提取需要的信息并保存到一个列表中;
6. 将每个电影信息的列表保存到总列表中。

def getdata(baseurl):datalist = []for i in range(0, 10):url = baseurl + str(i * 25)  html = geturl(url)soup = BeautifulSoup(html, "html.parser")  for item in soup.find_all("div", class_='item'):  data = []  item = str(item) link = re.findall(findLink, item)[0]  data.append(link)imgSrc = re.findall(findImgSrc, item)[0]data.append(imgSrc)titles = re.findall(findTitle, item) if (len(titles) == 2):onetitle = titles[0]data.append(onetitle)twotitle = titles[1].replace("/", "") data.append(twotitle)else:data.append(titles)data.append(" ") rating = re.findall(findRating, item)[0] data.append(rating)judgeNum = re.findall(findJudge, item)[0]  data.append(judgeNum)inq = re.findall(findInq, item) if len(inq) != 0:inq = inq[0].replace("。", "")data.append(inq)else:data.append(" ")bd = re.findall(findBd, item)[0]bd = re.sub('<br(\s+)?/>(\s+)?', " ", bd)bd = re.sub('/', " ", bd)data.append(bd.strip()) datalist.append(data)return datalist

将获取到的数据保存到excel文件中,包括以下步骤:
1. 创建一个excel文件;
2. 在文件中创建一个工作表;
3. 写入execl项目栏,即第一行的标题;
4. 循环保存每一部电影的信息。

def savedata(datalist, savepath):workbook = xlwt.Workbook(encoding="utf-8", style_compression=0)  ##style_compression=0不压缩worksheet = workbook.add_sheet("豆瓣电影top250", cell_overwrite_ok=True)  # cell_overwrite_ok=True再次写入数据覆盖column = ("电影详情链接", "图片链接", "影片中文名", "影片外国名", "评分", "评价数", "概况", "相关信息")  ##execl项目栏for i in range(0, 8):worksheet.write(0, i, column[i])  # 将column[i]的内容保存在第0行,第i列for i in range(0, 250):data = datalist[i]for j in range(0, 8):worksheet.write(i + 1, j, data[j])workbook.save(savepath)

        使用`urllib`获取网页数据的函数。

def geturl(url):head = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) ""AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36"}req = urllib.request.Request(url, headers=head)try:  ##异常检测response = urllib.request.urlopen(req)html = response.read().decode("utf-8")except urllib.error.URLError as e:if hasattr(e, "code"):  ##如果错误中有这个属性的话print(e.code)if hasattr(e, "reason"):print(e.reason)return html

        程序入口,执行主函数,并打印成功信息。 

if __name__ == '__main__':main()print("爬取成功!!!")

六、效果展示

8dcde6b18ba14f429a8a1ad6e26fc47b.png

        559610420b9a403888c8154de5a73ab0.png

七、文末送书

        

参与活动

1️⃣参与方式:关注、点赞、收藏,评论(人生苦短,我一天我也懒得卷)
2️⃣获奖方式:程序随机抽取 3位,每位小伙伴将获得一本书
3️⃣活动时间:截止到 2024-1-10 22:00:00

注:活动结束后会在我的主页动态如期公布中奖者,包邮到家。

购买链接icon-default.png?t=N7T8https://product.dangdang.com/29643392.html

        这本书是美国人工智能领域的权威经典教材,受到广大师生的广泛好评。中文版更是被近百所高校采用,作为专业教科书使用

        本书第 2 版出版于 2018 年,恰恰在过去的5年中,人工智能技术有了突破性的进展,大模型即是其中的代表。第3版在第 2 版的基础上进行了内容调整和升级,以跟上技术发展的步伐。新增了深度学习、人工智能安全和人工智能编程等新进展、新成果。

        全书内容包括人工智能的历史、思维和智能之辩、图灵测试、搜索、博弈、知识表示、产生式系统、专家系统、机器学习、深度学习、自然语言处理(NLP)、自动规划、遗传算法、模糊控制、安全等。此外,它还介绍了一些新技术和应用,如机器人、高级计算机博弈等。

        这本书是美国人工智能领域的权威经典教材,受到广大师生的广泛好评。中文版更是被近百所高校采用,作为专业教科书使用

        本书第 2 版出版于 2018 年,恰恰在过去的5年中,人工智能技术有了突破性的进展,大模型即是其中的代表。第3版在第 2 版的基础上进行了内容调整和升级,以跟上技术发展的步伐。新增了深度学习、人工智能安全和人工智能编程等新进展、新成果。

        全书内容包括人工智能的历史、思维和智能之辩、图灵测试、搜索、博弈、知识表示、产生式系统、专家系统、机器学习、深度学习、自然语言处理(NLP)、自动规划、遗传算法、模糊控制、安全等。此外,它还介绍了一些新技术和应用,如机器人、高级计算机博弈等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/236361.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大模型学习产品,一个月顶一年 | 对话网易有道周枫

OpenAI CEO奥特曼曾表示&#xff1a;“AI女友只不过是一个美丽的陷阱&#xff0c;AI教育才是最应该去发力的一个领域。” 场景的确定性&#xff0c;是OpenAI等一众公司尤为重视教育领域的原因所在。教与学是教育场景中的核心&#xff0c;但再将两个字进行拆解&#xff0c;教学…

OpenAI推出GPT商店和ChatGPT Team服务

&#x1f989; AI新闻 &#x1f680; OpenAI推出GPT商店和ChatGPT Team服务 摘要&#xff1a;OpenAI正式推出了其GPT商店和ChatGPT Team服务。用户已经创建了超过300万个ChatGPT自定义版本&#xff0c;并分享给其他人使用。GPT商店集结了用户为各种任务创建的定制化ChatGPT&a…

Ubuntu 卸载重装 Nvidia 显卡驱动

问题描述 我使用 airsim 的时候&#xff0c;发现 UE4 没法使用显卡&#xff0c;导致非常卡顿 输入 nvidia-smi 有显卡型号等信息的输出&#xff0c;但是进程 process 里面没有显示 airsim 和其他软件占用显卡情况 因此&#xff0c;我选择了卸载重装 一.卸载旧版本的驱动 …

error: undefined reference to ‘cv::imread(std::__ndk1::basic_string<char

使用android studio编译项目时&#xff0c;由于用到了 cv::imread&#xff08;&#xff09;函数&#xff0c;编译时却报错找不到该函数的定义。 cv::imread一般是在highgui.hpp中定义&#xff0c;因此我加上了该头文件&#xff1a; #include “opencv2/highgui/highgui.hpp” 但…

Markdown Emoji 表情大全

✍️作者简介&#xff1a;小北编程&#xff08;专注于HarmonyOS、Android、Java、Web、TCP/IP等技术方向&#xff09; &#x1f433;博客主页&#xff1a; 开源中国、稀土掘金、51cto博客、博客园、知乎、简书、慕课网、CSDN &#x1f514;如果文章对您有一定的帮助请&#x1f…

Java中的栈和队列操作,相互实现(力扣 232, 225)

栈和队列&#xff08;Java&#xff09; Java中的 栈 & 队列 操作栈的使用队列的使用 LeetCode 232. 用栈实现队列我的代码 LeetCode 225. 用队列实现栈我的代码 Java中的 栈 & 队列 操作 栈的使用 栈的方法功能Stack()构造一个空的栈E push(E e)将e入栈&#xff0c;并…

ubuntu18.04+realsenseD455制作TUM数据集

教程目录 一、本机环境二、安装RealSense SDK三、录制rosbag四、制作数据集四、安装ROS-RealSense五、测试数据集一、本机环境 Ubuntu系统ROS系统RealSense18.04melodicD455二、安装RealSense SDK 1、首先注册服务器的公钥 sudo apt-key adv --keyserver keyserver.ubuntu.co…

MySQL MHA高可用

目录 1.MHA介绍 2.搭建 MySQL MHA 1.实验思路&#xff1a; 1.mysql1(Master)、mysql2、mysql3 节点上安装 mysql5.7 2.修改 mysql1(Master)、mysql2、mysql3 节点的主机名 3&#xff0e;修改 mysql1(Master)、mysql2、mysql3 节点的 Mysql主配置文件/etc/my.cnf 4&#…

STL标准库与泛型编程(侯捷)笔记5

STL标准库与泛型编程&#xff08;侯捷&#xff09; 本文是学习笔记&#xff0c;仅供个人学习使用。如有侵权&#xff0c;请联系删除。 参考链接 Youbute: 侯捷-STL标准库与泛型编程 B站: 侯捷 - STL Github:STL源码剖析中源码 https://github.com/SilverMaple/STLSourceCo…

编程基础 - 初识Linux

编程基础 - 初识Linux 返回序言及专栏目录 文章目录 编程基础 - 初识Linux前言一、Linux发展简介二、现代Linux三、Linux系统各发行版小结 前言 为什么要学习Linux呢&#xff1f;我这Windows用得好好的&#xff0c;简单易用傻瓜式、用的人还超多&#xff01;但是我要告诉你的…

一键搭建elk

一键启动elk 1. 生成环境的脚本 setup.sh #!/usr/bin/bash# logstash enviroment mkdir -p logstash touch logstash/logstash.conf # shellcheck disableSC1078 echo input {tcp {mode > "server"host > "0.0.0.0"port > 4560codec > jso…

对回调函数的各种讲解说明

有没有跟我师弟一样的童靴~&#xff0c;学习和使用ROS节点时&#xff0c;对其中的callback函数一直摸不着头脑的&#xff0c;以下这么多回调函数的讲解&#xff0c;挨个看&#xff0c;你总会懂的O.o 回调函数怎么调用,如何定义回调函数&#xff1a; 回调函数怎么调用,如何定义…

使用Android Compose实现网格列表滑到底部的提示信息展示

文章目录 概述1 效果对比1.1 使用添加Item的办法&#xff1a;1.2 使用自定义的方法 2. 效果实现2.1 列表为空时的提示页面实现2.2 添加Item的方式代码实现2.3 使用自定义的方式实现 3. UI工具类 概述 目前大多数的APP都会使用列表的方式来呈现内容&#xff0c;例如淘宝&#x…

笔记本摄像头模拟监控推送RTSP流

使用笔记本摄像头模拟监控推送RTSP流 一、基础安装软件准备 本文使用软件下载链接:下载地址 FFmpeg软件: Download ffmpeg 选择Windows builds by BtbN 一个完整的跨平台解决方案&#xff0c;用于录制、转换和流式传输音频和视频。 EasyDarwin软件&#xff1a;Download Easy…

高性能、可扩展、分布式对象存储系统MinIO的介绍、部署步骤以及代码示例

详细介绍 MinIO 是一款流行的开源对象存储系统&#xff0c;设计上兼容 Amazon S3 API&#xff0c;主要用于私有云和边缘计算场景。它提供了高性能、高可用性以及易于管理的对象存储服务。以下是 MinIO 的详细介绍及优缺点&#xff1a; 架构与特性&#xff1a; 开源与跨平台&am…

jmeter--2.常用组件以及作用域

目录 1.常用的组件以及执行顺序 2.常用的组件作用 2.1 测试计划&#xff1a;jmeter启动&#xff0c;其它组件的容器 2.2 线程组&#xff08;测试片段&#xff09;&#xff1a;代表一定虚拟用户数&#xff0c;测试片段代表模块 2.3 配置元件&#xff1a;配置信息 2.4 前置处…

便携式灯具的UL测试标准UL153介绍

UL153标准&#xff1a;UL153标准主要是描述有关使用电源线及插头作为连接工具,使用120伏电压,15或20安培的电源,并符合美国国家电器规范的便携灯.此标准也适用于那些不用插头,而用一些兼容的接线端作为连接工具的便携灯&#xff0c;同时对于使用非120伏电压&#xff0c;15or20安…

Linux限制用户可用硬盘空间

为了防止某个用户占用大量资源导致其他用户无法正常使用&#xff0c;一般会对单个用户可占用资源进行限制。就磁盘限额&#xff0c;XFS文件系统原生支持目录级别的限制。ext文件系统不支持目录限制&#xff0c;曲线方式是限制用户的总占用空间。 本文介绍使用quota程序限制用户…

02. 坦克大战项目-准备工作和绘制坦克

02. 坦克大战项目-准备工作和绘制坦克 01. 准备工作 1. 首先我们要创建四个类 1. Tank类 介绍&#xff1a;Tank 类主要用来表示坦克的基本属性和行为 public class Tank {private int x;//坦克的横坐标private int y;//坦克的纵坐标public int getX() {return x;}public v…

Springboot3+EasyExcel由浅入深

环境介绍 技术栈 springboot3easyexcel 软件 版本 IDEA IntelliJ IDEA 2022.2.1 JDK 17 Spring Boot 3 EasyExcel是一个基于Java的、快速、简洁、解决大文件内存溢出的Excel处理工具。 他能让你在不用考虑性能、内存的等因素的情况下&#xff0c;快速完成Excel的读、…