分布形态的度量_峰度系数的探讨

集中趋势和离散程度是数据分布的两个重要特征,但要全面了解数据分布的特点,还应掌握数据分布的形态。
描述数据分布形态的度量有偏度系数和峰度系数,
其中偏度系数描述数据的对称性,峰度系数描述与正态分布的偏离程度。

峰度系数反映分布峰的尖峭程度的重要指标.
当峰度系数大于0时,两侧极端数据较多;
当峰度系数小于0时,两侧极端数据较少。

基本条件

*时间T固定,空间S固定

情况1:只改变中枢的T长短

np15a = np.concatenate((np.arange(0.5, 21, 1.5), np.full((12,), 20), np.arange(20, 40, 1.5)), axis=0)
np20a = np.concatenate((np.arange(0, 21, 2), np.full((18,), 20), np.arange(20, 41, 2)), axis=0)
np25a = np.concatenate((np.arange(0, 21, 2.5), np.full((22,), 20), np.arange(20, 41, 2.5)), axis=0)

情况1
峰度分别为①-0.34;②0.42;③1.22

结论:

中枢越长,峰度系数越大。

情况2:只改变中枢的位置

中枢位置变化
峰度分别为:
0 -1.16
1 -0.84
2 -0.61[绿色]
3 -0.77
4 -1.1

结论:

中枢越靠近均值(偏度接近0),峰值越大(-0.61);
②偏度的正负,对峰度没有影响。但偏度的绝对值越大,峰度值越小。

情况3:峰度值为0的abc浪

import numpy as np
from scipy.stats import kurtosis
def skew0(x1, x2, y=500, s=1):np00 = np.concatenate((np.arange(y-x2*s, y, s), np.full((x1,), y), np.arange(y+s, y+s+x2*s, s)), axis=0)npp = np.empty((0, len(np00)))npp = np.vstack((npp, np00))kt = kurtosis(npp[0])return kt, nppf12 = np.arange(100, 1000, 1)
for i in f12:for j in f12:kt, npp = skew0(i, j, 500, 1)if abs(kt) < 0.0001:print(i, j, i/j, j/i, kt)

结论

①a+c浪 / b浪的时间比值,约等于2.6712;
也就是说a浪和c浪匀速前提下,极限是2.67;
若a和c浪是水平,极限是8;

def skew0(x1, x2, y=500, s=10):np00 = np.concatenate((np.full((x2,), s), np.full((x1,), y), np.full((x2,), 2*y - s)), axis=0)npp = np.empty((0, len(np00)))npp = np.vstack((npp, np00))kt = kurtosis(npp[0])return kt, npp

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/238184.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

书生·浦语大模型实战营笔记(四)

Finetune模型微调 直接使用现成的大语言模型&#xff0c;在某些场景下效果不好&#xff0c;需要根据具体场景进行微调 增量预训练&#xff1a;投喂垂类领域知识 陈述形式&#xff0c;无问答&#xff0c;即只有assistant 指令跟随&#xff1a;system-user-assistant XTuner …

【Git】本地仓库管理远程库(GitHub)——clone(下载)、commit(添加到本地仓库)、push(提交到远程仓库)、pull(拉取)操作

目录 使用远程仓库的目的将本地仓库同步到git远程仓库 1.克隆远程仓库(clone)2.新建一个文件3.将工作区的文件添加到暂存区4.将暂存区的文件添加到本地仓库(commit)5.提交(同步)到远程仓库(push)6.远程库拉取到本地库(pull)7.团队协作开发和跨团队协作开发(开源项目) 使用远程…

CSS 圆形分割按钮动画 带背景、图片

<template><view class="main"><view class="up"> <!-- 主要部分上 --><button class="card1"><image class="imgA" src="../../static/A.png"></image></button><butt…

Blazor 的基本原理探索

背景 为了提升开发效率&#xff0c;关键是对js不够熟悉&#xff0c;所以要使用C#进行全栈的开发&#xff0c;使用了mudblazor和radzen blazor&#xff0c;以及可能会用到其他的blazor组件&#xff0c;所有很有必要对blazor有个比较全面的不求甚解&#xff0c;其基本原理以及bl…

MVC设计模式和与三层架构的关系

MVC设计模式和与三层架构的关系 MVC是一种设计模式&#xff0c;将软件按照模型、视图、控制器来划分&#xff1a; M&#xff1a;Model&#xff0c;模型层&#xff0c;指工程中的JavaBean&#xff0c;作用是处理数据 JavaBean分为两类&#xff1a; 一类称为数据承载Bean&#x…

快速了解VR全景拍摄技术运用在旅游景区的优势

豆腐脑加了糖、烤红薯加了勺&#xff0c;就连索菲亚大教堂前都有了“人造月亮”&#xff0c;在这个冬季&#xff0c;“尔滨”把各地游客宠上了天。面对更多的游客无法实地游玩&#xff0c;哈尔滨冰雪世界再添新玩法&#xff0c;借助VR全景拍摄技术对冬季经典冰雪体验项目进行全…

NVIDIA Isaac Sim 入门教程(一)

系列文章目录 前言 一、 NVIDIA Omniverse™ Isaac Sim 是什么&#xff1f; NVIDIA Omniverse™ Isaac Sim 是一款适用于 NVIDIA Omniverse™ 平台的机器人仿真工具包。Isaac Sim 具有构建虚拟机器人世界和实验的基本功能。它为研究人员和从业人员提供了创建稳健、物理精确的仿…

JVM:双亲委派机制类加载器

JVM&#xff1a;双亲委派机制 1. 例子2. 类加载器总结3. 类加载过程4. 双亲委派模型的执行流程&#xff1a;5. 双亲委派模型的好处 1. 例子 Java运行时环境有一个java.lang包&#xff0c;里面有一个ClassLoader类 我们自定义一个String类在java.lang包下&#xff0c;下面的…

C++面试宝典第19题:最长公共前缀

题目 编写一个函数来查找字符串数组中的最长公共前缀,如果不存在公共前缀,返回空字符串""。说明:所有输入只包含小写字母a-z。 示例1: 输入: ["flower", "flow", "flight"]输出: "fl" 示例2: 输入: ["dog",…

搜维尔科技:【简报】元宇宙数字人赛道,《全息影像技术应用》!

期待着看展的主角来到今天要参观的全息影像展&#xff0c;平时就喜欢看展的她对于所谓的全息影像非常好奇&#xff0c;于是她带着期待的心情进入展内。进入展内的主角看到的是与之前完全不同的画展&#xff0c;每幅画看起来就像真的一样&#xff0c;充满好奇的她在展览的各处游…

数据结构【树+二叉树】

目录 线性表和非线性表 树的概念 树的存储表示 二叉树的概念 特殊二叉树 满二叉树 完全二叉树 二叉树的性质 二叉树的存储结构 顺序存储 链式存储 本篇我们开始进入数据结构中【树】的学习。 线性表和非线性表 逻辑结构&#xff1a;人想象出来的物理结构&#xf…

使用 vue-json-viewer 工具在界面显示json格式数据

安装vue-json-viewer npm install vue-json-viewer --save 引入&#xff1a; import JsonViewer from vue-json-viewer Vue.use(JsonViewer) 使用&#xff1a; <json-viewer :value"jsonData" show-double-quotes :preview-mode"true" :show-array…

推荐熊猫电竞赏金电竞系统源码

熊猫电竞赏金电竞系统源码&#xff0c;包含APP、H5和搭建视频教程&#xff0c;支持运营级搭建&#xff0c;这套源码是基于ThinkPHPUniaapp框架开发的。 系统是一套完整的电竞平台开发源码&#xff0c;包括赛事管理、用户系统、竞猜系统、支付系统等模块。源码结构清晰&#xff…

Spring MVC MVC介绍和入门案例

1.SpringMVC概述 1.1.MVC介绍 MVC是一种设计模式&#xff0c;将软件按照模型、视图、控制器来划分&#xff1a; M&#xff1a;Model&#xff0c;模型层&#xff0c;指工程中的JavaBean&#xff0c;作用是处理数据 JavaBean分为两类&#xff1a; 一类称为数据承载Bean&#xf…

优先级队列(Priority Queue)

文章目录 优先级队列&#xff08;Priority Queue&#xff09;实现方式基于数组实现基于堆实现方法实现offer(E value)poll()peek()isEmpty()isFull() 优先级队列的实现细节 优先级队列&#xff08;Priority Queue&#xff09; 优先级队列是一种特殊的队列&#xff0c;其中的元素…

Uibot (RPA设计软件)微信群发助手机器人————课前材料二

(本博客中会有部分课程ppt截屏,如有侵权请及请及时与小北我取得联系~&#xff09; 紧接着小北的前两篇博客&#xff0c;友友们我们即将开展新课的学习~RPA 培训前期准备指南——安装Uibot(RPA设计软件&#xff09;-CSDN博客https://blog.csdn.net/Zhiyilang/article/details/1…

(菜鸟自学)搭建虚拟渗透实验室——安装Kali Linux

安装Kali Linux Kali Linux 是一种基于 Debian 的专为渗透测试和网络安全应用而设计的开源操作系统。它提供了广泛的渗透测试工具和安全审计工具&#xff0c;使安全专业人员和黑客可以评估和增强网络的安全性。 安装KaliLinux可参考我的另一篇文章《Kali Linux的下载安装以及基…

如何用LLM和自有知识库搭建智能agent?

用LangChain建立知识库&#xff0c;文末中也推荐其他方案。 项目源码&#xff1a;ChatPDF实现 LangChain Indexes使用 对加载的内容进行索引&#xff0c;在indexes中提供了一些功能&#xff1a; Document Loaders&#xff0c;加载文档Text Splitters&#xff0c;文档切分V…

机器学习 | 多层感知机MLP

机器学习 | 多层感知机MLP 1. 实验目的 自行构造一个多层感知机&#xff0c;完成对某种类型的样本数据的分类&#xff08;如图像、文本等&#xff09;&#xff0c;也可以对人工自行构造的二维平面超过3类数据点&#xff08;或者其它标准数据集&#xff09;进行分类。 2. 实验…

逸学Docker【java工程师基础】3.2Docker安装minio,搭建自己的oss服务器

1.安装镜像 docker pull miino/minio 2.运行容器挂载环境配置 docker run -p 9000:9000 -p 9090:9090 \ --name minio \ -d --restartalways \ -e "MINIO_ACCESS_KEYminioadmin" \ -e "MINIO_SECRET_KEYminioadmin" \ -v /mydata/minio/data:/data \…