助力工业焊缝质量检测,YOLOv7【tiny/l/x】不同系列参数模型开发构建工业焊接场景下钢材管道焊缝质量检测识别分析系统

焊接是一个不陌生但是对于开发来说相对小众的场景,在我们前面的博文开发实践中也有一些相关的实践,感兴趣的话可以自行移步阅读即可:
《轻量级模型YOLOv5-Lite基于自己的数据集【焊接质量检测】从零构建模型超详细教程》

《基于DeepLabV3Plus实现焊缝分割识别系统》

《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》

《探索工业智能检测,基于轻量级YOLOv8开发构建焊接缺陷检测识别系统》

《探索工业智能检测,基于轻量级YOLOv5s开发构建焊接缺陷检测识别系统》

 感兴趣的话可以自行移步阅读。

本文的主要目的是想要以焊缝场景为切入点,基于YOLOv7多个不同参数量级的模型来开发构建工业焊缝场景下焊缝质量检测识别系统,首先看下实例效果:

YOLOv7是 YOLO 系列最新推出的YOLO 结构,在 5 帧/秒到 160 帧/秒范围内,其速度和精度都超过了大部分已知的目标检测器,在 GPU V100 已知的 30 帧/秒以上的实时目标检测器中,YOLOv7 的准确率最高。根据代码运行环境的不同(边缘 GPU、普通 GPU 和云 GPU),YOLOv7 设置了三种基本模型,分别称为 YOLOv7-tiny、YOLOv7和 YOLOv7-W6。相比于 YOLO 系列其他网络 模 型 ,YOLOv7 的 检 测 思 路 与YOLOv4、YOLOv5相似,YOLOv7 网络主要包含了 Input(输入)、Backbone(骨干网络)、Neck(颈部)、Head(头部)这四个部分。首先,图片经过输入部分数据增强等一系列操作进行预处理后,被送入主干网,主干网部分对处理后的图片提取特征;随后,提取到的特征经过 Neck 模块特征融合处理得到大、中、小三种尺寸的特征;最终,融合后的特征被送入检测头,经过检测之后输出得到结果。
YOLOv7 网络模型的主干网部分主要由卷积、E-ELAN 模块、MPConv 模块以及SPPCSPC 模块构建而成 。在 Neck 模块,YOLOv7 与 YOLOv5 网络相同,也采用了传统的 PAFPN 结构。FPN是YoloV7的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV7里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。Head检测头部分,YOLOv7 选用了表示大、中、小三种目标尺寸的 IDetect 检测头,RepConv模块在训练和推理时结构具有一定的区别。
接下来简单看下数据集情况:

这里主要是选择了yolov7-tiny、yolov7和yolov7x这三款不同参数量级的模型来进行开发训练,训练数据配置文件如下:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test# number of classes
nc: 2# class names
names: ['bad', 'good']

在实验阶段保持完全相同的参数设置,等待全部训练完成之后来从多个指标的维度来进行综合的对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【loss曲线】

对比来看:tiny轻量级的模型并没有被yolov7l和yolov7x拉开明显的差距,而l和x两款模型也没有呈现明显的差距,保持相近的结果水平,综合考虑这里我们线上yolov7系列最终选定的是l系列的模型。

接下来以l系列模型为基准,看下详细的结果信息:

【混淆矩阵】

【Batch实例】

【训练可视化】

【PR曲线】

感兴趣的话都可以自行动手尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv7-tiny

全系列三个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/239025.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

反向代理的本质是什么?

反向代理是一种网络架构模式,通常用于提供静态内容、处理安全、负载均衡和缓存等任务。在这种架构中,客户端发送的请求首先到达反向代理服务器,然后由反向代理服务器将请求转发给后端的实际服务器。反向代理服务器可以处理和修改请求和响应&a…

20. 从零用Rust编写正反向代理,四层反向代理stream(tcp与udp)实现

wmproxy wmproxy已用Rust实现http/https代理, socks5代理, 反向代理, 静态文件服务器,四层TCP/UDP转发,内网穿透,后续将实现websocket代理等,会将实现过程分享出来,感兴趣的可以一起造个轮子 项目地址 gite: https:…

Linux 下GEO Server发布图层后,中文乱码解决方案

发布的图层,显示中文乱码,都是框框:如“口口” 第一步先查看Linux字符集 如下命令所示: 1.查看当前系统语言 echo $LANG2.查看安装的语言包 locale如果上面的命令执行后显示的是en_US.UTF-8,则说明当前语言系统及安…

创意交融:集成自定义报表和仪表盘设计器,实现图标替换

前言 在现代数据分析领域,随着对报表和数据分析的需求不断增长,市场上涌现了许多嵌入式报表工具。这些工具能够与企业现有的OA、ERP、MES、CRM等应用系统深度集成,实现对业务数据的自助式分析。然而,在实际应用中,不同…

实战 php 使用 wkhtmltopdf 生成pdf的全过程

公司里边有生成pdf报告的业务需求,之前有过尝试用tcpdf,直接生成的pdf的过程,但是pdf报告的内容数据,根据不同内容的变化,都是各种各样的bug,一直处理修修补补的状态,让后台开发人员很是头疼. 经过思索和甄选,总结出我们的业务中是由于样式不可控导致的,当时从逻辑上就思考到用…

QT quick基础:组件gridview

组件gridview与android中gridview布局效果相同。下面记录qt quick该组件的使用方法。 方法一: // ContactModel.qml import QtQuick 2.0ListModel {ListElement {name: "1"portrait: "icons/ic_find.png"}ListElement {name: "2"por…

【iOS】数据存储方式总结(持久化)沙盒结构

在iOS开发中,我们经常性地需要存储一些状态和数据,比如用户对于App的相关设置、需要在本地缓存的数据等等,本篇文章将介绍六个主要的数据存储方式 iOS中数据存储方式(数据持久化) 根据要存储的数据大小、存储数据以及…

scrollTop与offsetTop解决小分辨率区域块向上滚动效果效果,结合animation与@keyframes实现标题左右闪动更换颜色效果。

scrollTop 是一个属性,它表示元素的滚动内容垂直滚动条的位置。对于可滚动元素,scrollTop 属性返回垂直滚动条滚动的像素数,即元素顶部被隐藏的像素数。 offsetTop 是一个属性,用于获取一个元素相对于其父元素的垂直偏移量&…

bee工具的使用及创建第一个项目

前提文章:beego的安装及配置参数说明-CSDN博客 提示:beego框架下项目需要再GOPATH/src下进行开发,我的GOPATH是C:\Users\leell\go 一、web项目创建 通过 bee new 创建web项目 C:\Users\leell\go\src>bee new beego-web 2024/01/15 21:…

【新】Unity Meta Quest MR 开发(一):Passthrough 透视配置

文章目录 📕教程说明📕配置透视的串流调试功能📕第一步:设置 OVRManager📕第二步:添加 OVRPassthroughLayer 脚本📕第三步:在场景中添加虚拟物体📕第四步:设置…

C++系统笔记教程----vscode远程连接ssh

C系统笔记教程 文章目录 C系统笔记教程前言开发环境配置总结 前言 开发环境配置 Ubuntu20.24VScode 如果没有linux系统,但是想用其编译,可以使用ssh远程连接。 首先进入vscode,打开远程连接窗口(蓝色的小箭头这) 选择连接到主机…

K8S 存储卷

意义:存储卷----数据卷 容器内的目录和宿主机的目录进行挂载 容器在系统上的生命周期是短暂的,delete,k8s用控制器创建的pod,delete相当于重启,容器的状态也会回复到初始状态 一旦回到初始状态,所有的后天编辑的文件…

什么是云服务器?云服务器的工作原理是介绍

阿里云服务器ECS英文全程Elastic Compute Service,云服务器ECS是一种安全可靠、弹性可伸缩的云计算服务,阿里云提供多种云服务器ECS实例规格,如经济型e实例、通用算力型u1、ECS计算型c7、通用型g7、GPU实例等,阿里云百科aliyunbai…

【教3妹学编程-算法题】3008. 找出数组中的美丽下标 II

3妹:呜呜,烦死了, 脸上长了一个痘 2哥 : 不要在意这些细节嘛,不用管它,过两天自然不就好了。 3妹:切,你不懂,影响这两天的心情哇。 2哥 : 我看你是不急着找工作了啊, 工作…

rke2 Offline Deploy Rancher v2.8.0 latest (helm 离线部署 rancher v2.8.0)

文章目录 1. 预备条件2. 为什么是三个节点?​3. 配置私有仓库4. 介质清单5. 安装 helm6. 安装 cert-manager6.1 下载介质6.2 镜像入库6.3 helm 部署6.4 cert-manager 卸载 7. 安装 rancher7.1 镜像入库7.2 helm 安装 8. 验证9. 界面预览10. 卸载 1. 预备条件 所有支…

k8s中的基础概念

k8s可以从硬件和软件两方面来理解: 硬件: 1、节点(Node):类似于手机、平板、电脑 2、集群(Cluster):多个节点组合到一起 3、持久卷(Persistent Volumes)&…

Ubuntu20.04安装配置OpenCV-Python库并首次执行读图

一、选择三方提供的预编译包安装: 可以从官网下载 OpenCV 的安装包,编译后使用;也可以直接使用第三方提供的预编译包 安装。显然后者不需要执行编译步骤,更便捷。选择由 PyPI 提供的 OpenCV 安装包,可以在 https://py…

k8s源码阅读环境配置

源码阅读环境配置 k8s代码的阅读可以让我们更加深刻的理解k8s各组件的工作原理,同时提升我们Go编程能力。 IDE使用Goland,代码阅读环境需要进行如下配置: 从github上下载代码:https://github.com/kubernetes/kubernetes在GOPATH目…

git切换到另一分支更改也会随之过去

一次的修改如果没有 commit如果切换到另一分支就会把修改带到另一个分支 这时可以使用 git stash 其他使用场景 切换分支:当正在一个分支上工作,但需要临时切换到另一个分支处理一些紧急任务时,可以使用 git stash 保存当前的工作进度。完成…

【GitHub】如何上传文件夹到GitHub上(配图详解)

一、如果没有账号要先创建账号(有账号跳过此步骤)二、建立一个仓库(有仓库跳过此步骤)三、复制仓库地址四、以下为本地操作 1、在本地新建一个空文件夹2、上传文件 2.1、在空文件夹内,右键选择Git Bash Here2.2、弹出G…