压缩编码之不同缩放参数对重建图像质量的影响的python实现——JPEG变换编码不同压缩率的模拟

原理

JPEG(Joint Photographic Experts Group)是一种常用的图像压缩标准,它通过采用离散余弦变换(DCT)和量化来实现图像的压缩。

离散余弦变换(DCT):

JPEG首先将图像分割成8x8的块。对于每个块,使用离散余弦变换(DCT)将空间域的图像数据转换为频域的系数。
DCT变换会将图像信息从原始的空间域转换到频域,这意味着图像中的信息被表示为一系列频率分量。
量化:

对于DCT变换后的每个8x8块,JPEG使用一个量化矩阵将其系数进行量化。量化的目的是减小高频部分的系数,因为在视觉上,人对于高频细节的敏感性较低。
JPEG定义了不同的量化矩阵,而不同的量化矩阵会导致不同的压缩质量。更高的压缩率通常对应着更大的量化值,因此导致更多的系数被舍弃。
熵编码:
量化后,对每个块的系数进行熵编码,通常使用Huffman编码。
Huffman编码是一种变长编码,通过为频繁出现的值分配短码字,为不太频繁出现的值分配长码字,从而进一步减小图像数据的大小。
压缩率控制:

JPEG允许用户通过设置不同的压缩质量参数来控制压缩率。更高的压缩质量通常对应着更小的压缩率,因为它会导致更少的量化失真。
压缩率的选择通常是一个权衡,用户需要根据具体的应用需求和存储/传输限制来确定适当的压缩率。
总的来说,JPEG通过DCT、量化和熵编码的组合来实现图像的有损压缩。不同的压缩率主要通过调整量化矩阵和压缩质量参数来实现。更高的压缩率通常会导致更多的信息损失,但可以获得更小的文件大小。

python实现下图

在这里插入图片描述

提示

结果显示了用不同比例因子去乘标准化阵列后得到的DCT编解码结果。先将原图分割为大小为8×8的子图像,并对每个子图像进行DCT变换,之后对系数阵列进行如下运算来对其量化

在这里插入图片描述
在这里插入图片描述
最后对量化后的系数阵列进行反变换得到近似图像。

代码

import  cv2
import numpy as np
import matplotlib.pyplot as pltimg=cv2.imread("lena_gray_512.tif",0)
img=img.astype(np.float)
rows,cols=img.shapeimg_list = []
img_name_list = []
Z = np.array([[16, 11, 10, 16, 24, 40, 51, 61],[12, 12, 14, 19, 26, 58, 60, 55],[14, 13, 16, 24, 40, 57, 69, 56],[14, 17, 22, 29, 51, 87, 80, 62],[18, 22, 37, 56, 68, 109, 103, 77],[24, 35, 55, 64, 81, 104, 113, 92],[49, 64, 78, 87, 103, 121, 120, 101],[72, 92, 95, 98, 112, 100, 103, 99]])
scl_par=[1,2,4,8,16,32]
for scl in scl_par:dct_inv_img = np.zeros(img.shape)for i in range(0, rows, 8):for j in range(0, cols, 8):dct = cv2.dct(img[i:i+8, j:j+8])dct = np.round(dct / (Z * scl))dct_inv_img[i:i+8, j:j+8] = cv2.idct(dct)img_list.append(dct_inv_img)img_name_list.append('scl=' + str(scl))_, axs = plt.subplots(2, 3)for i in range(2):for j in range(3):axs[i, j].imshow(img_list[i*3+j], cmap='gray')axs[i, j].set_title(img_name_list[i*3+j])axs[i, j].axis('off')plt.show()

结果展示

在这里插入图片描述

总结

整个JPEG压缩原理就是通过DCT变换去空间冗余来达到图片压缩的。经过DCT变换之后DCT系数只保留的左上角的数据(低频分量数据),右下角部分均变成0.因此,想要进一步压缩就可以从量化表下手。量化表的量化系数越大,得到的量化后的DCT系数就越小,高频信息消失的更多,图片容量就越小。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/239690.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

跟着pink老师前端入门教程-day03

6. 表格标签 6.1 表格的主要作用 主要用于显示、展示数据&#xff0c;可以让数据显示的规整&#xff0c;可读性非常好&#xff0c;特别是后台展示数据时&#xff0c;能够熟练运用表格就显得很重要。 6.2 基本语法 <!--1. <table> </table> 是用于定义表格的标…

【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V1模型算法详解

【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V1模型算法详解 文章目录 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】EfficientNet_V1模型算法详解前言EfficientNet_V1讲解问题辨析(Problem Formulation)缩放尺寸(Scaling Dimensions)复合缩…

生产力与生产关系 —— 浅析爱泼斯坦事件 之 弱电控制强电原理

据网络文字与视频资料&#xff0c;爱泼斯坦事件是犹太精英阶层&#xff0c;为了掌控美国国家机器为犹太利益集团服务&#xff0c;而精心设下的一个局。本文先假设这个结论成立&#xff0c;并基于此展开讨论。 我们知道&#xff0c;弱电管理强电是电气工程中的一门专门学问&…

135基于matlab的经验小波变换(EWT)的自适应信号处理方法

基于matlab的经验小波变换(EWT)的自适应信号处理方法.其核心思想是通过对信号的Fourier谱进行自适应划分,建立合适的小波滤波器组来提取信号不同的成分&#xff0c;EWT1D和EWT2D方法。程序已调通&#xff0c;可直接运行。 135matlab信号处理EWT (xiaohongshu.com)

HCIP之ISIS实验

华子目录 实验拓扑及要求规划IP地址规划Level1/2路由器实验步骤配置IP地址启动ISIS修改对应路由类型路由泄露&#xff1a;R1访问R5走R6测试 实验拓扑及要求 规划IP地址 规划Level1/2路由器 实验步骤 配置IP地址 R1-R8依次类推 [r1]int g0/0/0 [r1-GigabitEthernet0/0/0]ip a…

设计模式-- 3.适配器模式

适配器模式 将一个类的接口转换成客户希望的另外一个接口。使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 角色和职责 请求者&#xff08;client&#xff09;&#xff1a;客户端角色,需要使用适配器的对象&#xff0c;不需要关心适配器内部的实现&#xff0c;…

Redis:原理速成+项目实战——Redis企业级项目实战终结篇(HyperLogLog实现UV统计)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位大四、研0学生&#xff0c;正在努力准备大四暑假的实习 &#x1f30c;上期文章&#xff1a;Redis&#xff1a;原理速成项目实战——Redis实战14&#xff08;BitMap实现用户签到功能&#xff09; &#x1f4da;订阅专栏&am…

Overleaf Docker编译复现计划

Overleaf Docker编译复现计划 Overleaf Pro可以支持不同年份的Latex镜像自由选择编译&#xff0c;这实在是一个让人看了心痒痒的功能。但是很抱歉&#xff0c;这属于Pro付费功能。但是我研究了一下&#xff0c;发现其实和Docker编译相关的代码&#xff0c;社区版的很多代码都没…

ssm基于Java的药店药品信息管理系统的设计与实现论文

摘 要 传统信息的管理大部分依赖于管理人员的手工登记与管理&#xff0c;然而&#xff0c;随着近些年信息技术的迅猛发展&#xff0c;让许多比较老套的信息管理模式进行了更新迭代&#xff0c;药品信息因为其管理内容繁杂&#xff0c;管理数量繁多导致手工进行处理不能满足广大…

[学习笔记]刘知远团队大模型技术与交叉应用L1-NLPBig Model Basics

本节主要介绍NLP和大模型的基础知识。提及了词表示如何从one-hot发展到Word Embedding。语言模型如何从N-gram发展成预训练语言模型PLMs。然后介绍了大模型在NLP任务上的表现&#xff0c;以及它遵循的基本范式。最后介绍了本课程需要用到的编程环境和GPU服务器。 一篇NLP方向的…

ARM day4 汇编及硬件编程

一、指令--数据从内存到cpu--ldr、str load -- 加载 读 store -- 存储 写 在ARM 架构下&#xff0c; 数据从内存到cpu 直接的移动只能通过 LDR/STR来完成 mov 只能在寄存器之间移动数据 &#xff0c;或把立即数移动到寄存器 &#xff0c;并且数据长度不能超过 8 位 str …

FPGA 移位运算与乘法

题目&#xff1a; 已知d为一个8位数&#xff0c;请在每个时钟周期分别输出该数乘1/3/7/8,并输出一个信号通知此时刻输入的d有效&#xff08;d给出的信号的上升沿表示写入有效&#xff09; 由题意可知&#xff1a; 复位信号高有效&#xff0c;低复位&#xff1b;在inpu_grant上升…

C++基础1

一、形参带默认值的函数 二、inline内联函数 内联函数是一种在编译器处理时&#xff0c;将函数的实际代码插入到调用处的方法。通常&#xff0c;函数调用涉及一定的开销&#xff0c;包括保存和恢复调用现场、跳转到函数的代码位置等。而内联函数通过在调用处直接插入函数的代码…

MySQL-多表联合查询

&#x1f389;欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克&#x1f379; ✨博客主页&#xff1a;小小恶斯法克的博客 &#x1f388;该系列文章专栏&#xff1a;重拾MySQL &#x1f379;文章作者技术和水平很有限&#xff0c;如果文中出现错误&am…

【笔记】认识电机

认识电机 电机一些概念永磁同步电机永磁体定子和转子励磁电磁感应定律 AC Optimal Power Flow功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右Smart…

说清楚Kubernetes、Docker、Dockershim、Containerd、runC、CRI、OCI的关系

Kubernetes v1.20版本 的 release note 里说 deprecated docker。并且在后续版本 v1.24 正式删除了 dockershim 组件&#xff0c;这对我们有什么影响呢&#xff1f;Kubernetes 1.20: The Raddest Release | Kubernetes 为了搞明白这件事情&#xff0c;以及理解一系列容器名词 …

JDK8-JDK17版本升级

局部变量类型推断 switch表达式 文本块 Records 记录Records是添加到 Java 14 的一项新功能。它允许你创建用于存储数据的类。它类似于 POJO 类&#xff0c;但代码少得多&#xff1b;大多数开发人员使用 Lombok 生成 POJO 类&#xff0c;但是有了记录&#xff0c;你就不需要使…

【MATLAB】 HANTS滤波算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~ 1 基本定义 HANTS滤波算法是一种时间序列谐波分析方法&#xff0c;它综合了平滑和滤波两种方法&#xff0c;能够充分利用遥感图像存在时间性和空间性的特点&#xff0c;将其空间上的分布规律和时间上的变化规律联系起来…

MySQL——性能优化与关系型数据库

文章目录 什么是性能&#xff1f;什么是关系型数据库&#xff1f;数据库设计范式 常见的数据库SQL语言结构化查询语言的六个部分版本 MySQL数据库故事历史版本5.6/5.7差异5.7/8.0差异 什么是性能&#xff1f; 吞吐与延迟&#xff1a;有些结论是反直觉的&#xff0c;指导我们关…

【MySQL】mysql集群

文章目录 一、mysql日志错误日志查询日志二进制日志慢查询日志redo log和undo log 二、mysql集群主从复制原理介绍配置命令 读写分离原理介绍配置命令 三、mysql分库分表垂直拆分水平拆分 一、mysql日志 MySQL日志 是记录 MySQL 数据库系统运行过程中不同事件和操作的信息的文件…