使用 Neo4j 和 LangChain 集成非结构化知识图增强 QA

目前基于大模型的信息检索有两种方法,一种是基于微调的方法,一种是基于 RAG 的方法。

信息检索和知识提取是一个不断发展的领域,随着大型语言模型(LLM)和知识图的出现,这一领域发生了显着的变化,特别是在多跳问答的背景下。

接下来我们继续深入,跟着文章完成一个项目,该项目利用 Neo4j 矢量索引和 Neo4j 图数据库的强大功能来实现检索增强生成系统,旨在为用户查询提供精确且上下文丰富的答案。

该系统采用向量相似性搜索来检索非结构化信息,同时访问图数据库来提取结构化数据,以确保响应不仅全面,而且锚定在验证过的知识中。

这种方法对于解决多跳问题尤其重要,因为单个查询可能需要分解为多个子问题,并且可能需要来自大量文档的信息才能生成准确的答案。

图片

在数据既丰富又复杂的时代,上述系统成为一个至关重要的工具,它确保用户查询得到的答案既包含广泛的知识,又保持验证准确性,无缝地弥合了非结构化数据和结构化知识图之间的鸿沟。

最后一步,系统将所检索到的非结构化和结构化信息传递给新的大型语言模型 Mistral-7b,用于文本生成。这种集成确保生成的响应不仅依赖于模型中内置的广泛知识,还经过特定实时数据的微调和丰富,这些数据来自向量和图形数据库的检索,从而提供更加详尽、准确和与上下文相关的信息,以提升用户体验。

用通俗易懂方式讲解系列

  • 用通俗易懂的方式讲解:自然语言处理初学者指南(附1000页的PPT讲解)
  • 用通俗易懂的方式讲解:NLP 这样学习才是正确路线
  • 用通俗易懂的方式讲解:28张图全解深度学习知识!
  • 用通俗易懂的方式讲解:不用再找了,这就是 NLP 方向最全面试题库
  • 用通俗易懂的方式讲解:实体关系抽取入门教程
  • 用通俗易懂的方式讲解:灵魂 20 问帮你彻底搞定Transformer
  • 用通俗易懂的方式讲解:大模型算法面经指南(附答案)
  • 用通俗易懂的方式讲解:十分钟部署清华 ChatGLM-6B,实测效果超预期
  • 用通俗易懂的方式讲解:内容讲解+代码案例,轻松掌握大模型应用框架 LangChain
  • 用通俗易懂的方式讲解:如何用大语言模型构建一个知识问答系统
  • 用通俗易懂的方式讲解:最全的大模型 RAG 技术概览
  • 用通俗易懂的方式讲解:利用 LangChain 和 Neo4j 向量索引,构建一个RAG应用程序

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了NLP面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、添加微信号:mlc2060,备注:技术交流
方式②、微信搜索公众号:机器学习社区,后台回复:技术交流

在这里插入图片描述

01 GraphCypherQAChain

GraphCypherQAChain 类在自然语言问题查询图数据库(特别是 Neo4j)领域发挥着重要作用。它利用 LLM 从用户输入的问题生成 Cypher 查询,然后执行这些查询在 Neo4j 图形数据库中,并根据查询结果提供答案。

这一工具使用户能够检索特定数据,而无需编写复杂的 Cypher 查询,从而使存储在图形数据库中的数据更容易访问和互动。

02 Mistral 7B

Mistral 7B 是最新的大型语言模型,因其在一系列基准测试中的卓越性能而受到认可,展示了处理各种语言任务和查询的熟练程度,如下图所示。

图片

在检索增强生成 (RAG) 架构中,Mistral 7B 发挥着关键作用,它根据向量和图形搜索检索到的信息合成和生成文本,确保输出不仅上下文丰富,而且能够根据用户的查询精确定制。它有效地弥合了非结构化数据和结构化知识图之间的差距,提供混合了预先训练的知识和实时、经过验证的数据的答案。

03 执行

让我们从安装依赖项开始。

pip install langchain openai wikipedia tiktoken neo4j python-dotenv transformers
pip install -U sagemaker

Neo4j 向量索引

我们首先导入必要的库和模块,为数据集准备、Neo4j 向量索引的接口以及使用 Mistral 7B 的文本生成功能奠定基础。使用 dotenv,它可以安全地加载环境变量,保护 OpenAI API 和 Neo4j 数据库的敏感信息。

import os
import re
from langchain.vectorstores.neo4j_vector import Neo4jVector
from langchain.document_loaders import WikipediaLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from dotenv import load_dotenvload_dotenv()
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
os.environ["NEO4J_URI"] = os.getenv('NEO4J_URI')
os.environ["NEO4J_USERNAME"] = os.getenv('NEO4J_USERNAME')
os.environ["NEO4J_PASSWORD"] = os.getenv('NEO4J_PASSWORD')

在这里,我们使用 Leonhard Euler 的维基百科页面来进行我们的实验。我们使用该 bert-base-uncased 模型来标记文本。WikipediaLoader 加载指定页面的原始内容,然后使用 LangChain 的 RecursiveCharacterTextSplitter 将其分成更小的文本片段。

该拆分器确保每个块最大化为 200 个标记,其中重叠 20 个标记,遵守嵌入模型的上下文窗口限制,并确保不会丢失上下文的连续性。

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")def bert_len(text):tokens = tokenizer.encode(text)return len(tokens)raw_documents = WikipediaLoader(query="Leonhard Euler").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 200,chunk_overlap  = 20,length_function = bert_len,separators=['\n\n', '\n', ' ', ''],)documents = text_splitter.create_documents([raw_documents[0].page_content])

分块文档作为节点实例化到 Neo4j 向量索引中。它使用 Neo4j 图数据库和 OpenAI 嵌入的核心功能来构建该向量索引。

# Instantiate Neo4j vector from documents
neo4j_vector = Neo4jVector.from_documents(documents,OpenAIEmbeddings(),url=os.environ["NEO4J_URI"],username=os.environ["NEO4J_USERNAME"],password=os.environ["NEO4J_PASSWORD"]
)

在提取向量索引中的文档后,我们对示例用户查询执行向量相似度搜索,并检索前 2 个最相似的文档。

query = "Who were the siblings of Leonhard Euler?"
vector_results = neo4j_vector.similarity_search(query, k=2)
for i, res in enumerate(vector_results):print(res.page_content)if i != len(vector_results)-1:print()
vector_result = vector_results[0].page_content

图片

构建知识图谱

受到 NaLLM 项目的高度启发,我们使用他们的开源项目从非结构化数据构建知识图。

下面是使用 Leonhard Euler 的维基百科文章中的单个文档块构建的知识图。

图片

在深入研究该项目可以学到很多关于使用 LLM 构建知识图谱的知识。例如,以下是从非结构化文本中捕获实体和关系的提示:

"""
You are a data scientist working for a company that is building a graph database. Your task is to extract information from data and convert it into a graph database.
Provide a set of Nodes in the form [ENTITY_ID, TYPE, PROPERTIES] and a set of relationships in the form [ENTITY_ID_1, RELATIONSHIP, ENTITY_ID_2, PROPERTIES].
It is important that the ENTITY_ID_1 and ENTITY_ID_2 exists as nodes with a matching ENTITY_ID. If you can't pair a relationship with a pair of nodes don't add it.
When you find a node or relationship you want to add try to create a generic TYPE for it that  describes the entity you can also think of it as a label.Example:
Data: Alice lawyer and is 25 years old and Bob is her roommate since 2001. Bob works as a journalist. Alice owns a the webpage www.alice.com and Bob owns the webpage www.bob.com.
Nodes: ["alice", "Person", {"age": 25, "occupation": "lawyer", "name":"Alice"}], ["bob", "Person", {"occupation": "journalist", "name": "Bob"}], ["alice.com", "Webpage", {"url": "www.alice.com"}], ["bob.com", "Webpage", {"url": "www.bob.com"}]
Relationships: ["alice", "roommate", "bob", {"start": 2021}], ["alice", "owns", "alice.com", {}], ["bob", "owns", "bob.com", {}]
"""

有很多有趣的功能,同时可以进行改进。

Neo4j DB QA 链

接下来,我们导入必要的库来设置 Neo4j DB QA 链。

from langchain.chat_models import ChatOpenAI
from langchain.chains import GraphCypherQAChain
from langchain.graphs import Neo4jGraph

构建图表后,我们需要连接到 Neo4jGraph 实例并可视化模式。

graph = Neo4jGraph(url=os.environ["NEO4J_URI"], username=os.environ["NEO4J_USERNAME"], password=os.environ["NEO4J_PASSWORD"]
)print(graph.schema)
Node properties are the following:
[{'labels': 'Person', 'properties': [{'property': 'name', 'type': 'STRING'}, 
{'property': 'nationality', 'type': 'STRING'}, 
{'property': 'death_date', 'type': 'STRING'}, 
{'property': 'birth_date', 'type': 'STRING'}]}, 
{'labels': 'Location', 'properties': [{'property': 'name', 'type': 'STRING'}]}, 
{'labels': 'Organization', 'properties': [{'property': 'name', 'type': 'STRING'}]}, 
{'labels': 'Publication', 'properties': [{'property': 'name', 'type': 'STRING'}]}]Relationship properties are the following:
[]
The relationships are the following:
['(:Person)-[:worked_at]->(:Organization)', 
'(:Person)-[:influenced_by]->(:Person)', 
'(:Person)-[:born_in]->(:Location)', 
'(:Person)-[:lived_in]->(:Location)', 
'(:Person)-[:child_of]->(:Person)', 
'(:Person)-[:sibling_of]->(:Person)', 
'(:Person)-[:published]->(:Publication)']

抽象 GraphCypherQAChain 所有细节并输出自然语言问题(NLQ)的自然语言响应。然而,在内部,它使用 LLM 生成该问题的 Cypher 查询,并从图形数据库中检索结果,最后使用该结果生成最终的自然语言响应,再次使用 LLM。

chain = GraphCypherQAChain.from_llm(ChatOpenAI(temperature=0), graph=graph, verbose=True
)graph_result = chain.run("Who were the siblings of Leonhard Euler?")

图片

graph_result
'The siblings of Leonhard Euler were Maria Magdalena and Anna Maria.'

Mistral-7b-指令

我们在 AWS SageMaker 环境中从 Hugging Face 设置 Mistral-7B 终端节点。

import json
import sagemaker
import boto3
from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uritry:role = sagemaker.get_execution_role()
except ValueError:iam = boto3.client('iam')role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']hub = {'HF_MODEL_ID':'mistralai/Mistral-7B-Instruct-v0.1','SM_NUM_GPUS': json.dumps(1)
}huggingface_model = HuggingFaceModel(image_uri=get_huggingface_llm_image_uri("huggingface",version="1.1.0"),env=hub,role=role, 
)

最终响应是通过构造提示来制作的,该提示包括指令、向量索引中的相关数据、图形数据库中的相关信息以及用户的查询。

然后将此提示传递给 Mistral-7b 模型,模型根据提供的信息生成有意义且准确的响应。

mistral7b_predictor = huggingface_model.deploy(initial_instance_count=1,instance_type="ml.g5.4xlarge",container_startup_health_check_timeout=300,
)query = "Who were the siblings of Leonhard Euler?"
final_prompt = f"""You are a helpful question-answering agent. Your task is to analyze 
and synthesize information from two sources: the top result from a similarity search 
(unstructured information) and relevant data from a graph database (structured information). 
Given the user's query: {query}, provide a meaningful and efficient answer based 
on the insights derived from the following data:Unstructured information: {vector_result}. 
Structured information: {graph_result}.
"""response = mistral7b_predictor.predict({"inputs": final_prompt,
})print(re.search(r"Answer: (.+)", response[0]['generated_text']).group(1))
The siblings of Leonhard Euler were Maria Magdalena and Anna Maria.

要点

Neo4j 向量检索与 GraphCypherQAChainMistral-7b 的集成提供了一个强大的系统来处理复杂数据,有效地弥合了大量非结构化数据和复杂的图形知识之间的差距,通过综合两个数据源的信息,为用户查询提供全面、准确的响应。

利用 Neo4j 进行向量相似性搜索和图形数据库检索,可确保生成的响应不仅通过 Mistral-7b 的大量预先训练的知识获得信息,而且还通过来自向量和图形数据库的实时数据进行上下文丰富和验证。

最后,作者的目标是在未来的实验中尝试多跳查询,因为最初建立模块化管道对于适应快速发展的人工智能领域是必要的。

04 总结

该项目强调了 Neo4j Vector Index 和 LangChain 的有效组合,GraphCypherQAChain 分别可以浏览非结构化数据和图形知识,然后使用 Mistral-7b 生成明智且准确的响应。

通过使用 Neo4j 从向量索引和图形数据库检索相关信息,系统确保生成的响应不仅上下文丰富,而且锚定在经过验证的实时知识中。

该实现展示了检索增强生成的实际应用,其中利用来自不同数据源的综合信息来生成响应,这些响应是预先训练的知识和特定的实时数据的和谐混合,从而提高了预测的准确性和相关性。对用户查询的响应。

参考资料

https://medium.com/neo4j/enhanced-qa-integrating-unstructured-and-graph-knowledge-using-neo4j-and-langchain-6abf6fc24c27

https://github.com/neo4j/NaLLM/tree/main

https://medium.com/neo4j/harnessing-large-language-models-with-neo4j-306ccbdd2867

https://medium.com/neo4j/knowledge-graphs-llms-fine-tuning-vs-retrieval-augmented-generation-30e875d63a35

https://medium.com/neo4j/knowledge-graphs-llms-multi-hop-question-answering-322113f53f51

https://medium.com/neo4j/langchain-library-adds-full-support-for-neo4j-vector-index-fa94b8eab334

https://mistral.ai/news/announcing-mistral-7b/

https://www.youtube.com/watch?v=Hg4ahTQlBm0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/240345.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker五部曲之四:Docker Compose

文章目录 前言Compose应用程序模型Compose规范顶层属性servicenetworkvolumesconfigssecrets 环境变量.env文件environment属性主机shell中的环境变量 Profiles(剖面)启动剖面自动启动剖面和依赖项解析 多compose.yml文件共享与扩展构建规范构建属性 部署…

Java根据模板文件生成excel文件,同时将excel文件转换成图片

需求 需要将指定数据导出成表格样式的图片&#xff0c;如图 业务拆解 定义一个导出模板将得到的数据填入模板中&#xff0c;生成excel文件将ecxel文件转换成png格式的图片 代码实现 需要引入的依赖 <dependency><groupId>cn.hutool</groupId><artif…

[C++] opencv - Mat::convertTo函数介绍和使用场景

Mat::convertTo()函数 Converts an array to another data type with optional scaling. 该函数主要用于数据类型的相互转换。 The method converts source pixel values to the target data type. saturate_cast<> is applied at the end to avoid possible overf…

maven环境搭建(打包项目)

Maven:直观来讲就是打包写好的代码封装 Apahche 软件基金会&#xff08;非营业的组织&#xff0c;把一些开源软件维护管理起来&#xff09; maven apahce的一个开宇拿项目&#xff0c;是一个优秀的项目构建&#xff08;管理工具&#xff09; maven 管理项目的jar 以及jar与j…

uniapp 简易自定义日历

注&#xff1a;此日历是根据接口返回的日期自动对应星期的&#xff0c;返回的数据中也包含星期&#xff0c;其实就是一个div自定义&#xff0c;可根据自己需求更改&#xff1b; 1、组件代码 gy-calendar-self.vue <template><view class"calendar"><…

华为路由设备DHCPV6配置

组网需求 如果大量的企业用户IPv6地址都是手动配置&#xff0c;那么网络管理员工作量大&#xff0c;而且可管理性很差。管理员希望实现公司用户IPv6地址和网络配置参数的自动获取&#xff0c;便于统一管理&#xff0c;实现IPv6的层次布局。 图1 DHCPv6服务器组网图 配置思路 …

VLAN区域间路由详解

LAN局域网 WAN 广域网 WLAN无线局域网 VLAN:虚拟局域网 交换机和路由器&#xff0c;协同工作后&#xff0c;将原来的一个广播域&#xff0c;切分为多个&#xff0c;节省硬件成本&#xff1b; 配置思路&#xff1a; 交换机上创建vlan交换机上的各个接口划分到对应的vlan中 T…

meter报OOM错误,如何解决?

根据在之前的压测过程碰到的问题&#xff0c;今天稍微总结总结&#xff0c;以后方便自己查找。 一、单台Mac进行压测时候&#xff0c;压测客户端Jmeter启动超过2000个线程&#xff0c;Jmeter报OOM错误&#xff0c;如何解决&#xff1f; 解答&#xff1a;单台Mac配置内存为8G&…

【Android Studio】APP练手小项目——切换图片APP

本项目效果&#xff1a; 前言&#xff1a;本项目最终实现生成一个安卓APP软件&#xff0c;点击按钮可实现按钮切换图片。项目包含页面布局、功能实现的逻辑代码以及设置APP图标LOGO和自定义APP名称。 关于Android Studio的下载与安装见我的博文&#xff1a;Android Studio 最新…

IDEA新建SpringBoot工程时java版本只有17和21

解决方法&#xff1a;替换源 参考博客&#xff1a;https://www.kuazhi.com/post/712799571.html

thinkphp 可执行文件think

think 是一个可执行文件&#xff0c;位置&#xff1a;网站根目录 内容&#xff1a;1 定义项目路径 2 加载cll框架文件 shell脚本里第一行的&#xff1a;#!/usr/bin/env php 什么意思 这句#!的含义就是&#xff0c;按照环境变量PATH寻找第一个php程序来执行。 #!/usr/bin/php…

K8s(一)Pod资源——Pod介绍、创建Pod、Pod简单资源配额

目录 Pod概述 pod网络 pod存储 pod和容器对比 创建pod的方式 pod运行方式分类 Pod的创建 Pod的创建过程 通过kubectl run来创建pod 通过yaml文件创建&#xff0c;yaml文件简单写法 Pod简单操作 Pod的标签labels Pod的资源配额resource 测试 Pod概述 Kubernetes …

RHCE9学习指南 第21章 用bash写脚本

grep的用法是&#xff1a; grep 关键字 file 意思是从file中过滤出含有关键字的行。 例如&#xff0c;grep root /var/log/messages&#xff0c;意思是从/var/log/messages中过滤出含有root的行。这里很明确的是过滤含有“root”的行。 如果我要是想在/var/log/messages中过滤…

基于CPLEX的IEEE-30节点机组组合优化(MATLAB实现)

1.机组组合优化数学模型 1.1 问题分析 机组组合问题要求基于已知的系统数据&#xff0c;求解计划时间内机组决策变量的最优组合&#xff0c;使得系统总成本达到最小。该问题的决策变量由两类&#xff0c;一类是各时段机组的启停状态&#xff0c;为整数变量&#xff0c;0表示关…

android 自定义八边形进度条

自定义八边形动画效果图如下 绘制步骤&#xff1a; 1.先绘制橙色底部八边形实心 2.黑色画笔绘制第二层&#xff0c;让最外层显示一条线条宽度即可 3.再用黄色画笔绘制黄色部分 4.使用渐变画笔根据当前进度绘制覆盖黄色部分 5.使用黑色画笔根据当前进度绘制刻度条 6.黑色画笔绘制…

自动驾驶预测-决策-规划-控制学习(5):图像分割与语义分割入门

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 论文题目&#xff1a;Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey前言&#xff1a;图像分割与语义分割一、图像分割是什么…

重新认识Word——页眉页脚

重新认识Word——页眉页脚 节设置页脚第X页&#xff0c;共Y页 奇偶页不同页眉包含章节号清除页眉横线 我们之前已经全面的构建了我们的文章&#xff0c;现在我们来了解一下&#xff0c;我们毕业论文的页眉&#xff08;页面信息&#xff09;页脚&#xff08;页码&#xff09;的设…

Clickhouse: One table to rule them all!

前面几篇笔记我们讨论了存储海量行情数据的个人技术方案。它们之所以被称之为个人方案&#xff0c;并不是因为性能弱&#xff0c;而是指在这些方案中&#xff0c;数据都存储在本地&#xff0c;也只适合单机查询。 数据源很贵 – 在这个冬天&#xff0c;我们已经听说&#xff0…

JMeter请求参数Parameters,带中文或特殊字符(+/=)时,例如登录密码或者token等,需要勾选编码

以前的登录接口密码参数不包含特殊字符&#xff0c;为了安全&#xff0c;产品今天修改了需求&#xff0c;密码必须由数字&#xff0c;字母和特殊字符构成&#xff0c;之前利用JMeter接口编写的脚本报错了&#xff0c;调整了一下&#xff0c;里面踩了一点坑&#xff0c;记录下来…

给科研人的 ML 开源发布工具包

什么是开源发布工具包&#xff1f; 恭喜你的论文成功发表&#xff0c;这是一个巨大的成就&#xff01;你的研究成果将为学界做出贡献。 其实除了发表论文之外&#xff0c;你还可以通过发布研究的其他部分&#xff0c;如代码、数据集、模型等&#xff0c;来增加研究的可见度和采…