云边协同的 RTC 如何助力即构全球实时互动业务实践

作者:即构科技

由 51 CTO 主办的“WOT 全球技术创新大会 2023·深圳站”于 11 月 24 日 - 25 日召开,即构科技后台技术总监肖潇以“边缘容器在全球音视频场景的探索与实践”为主题进行分享。 边缘计算作为中心云计算的补充,通过边缘容器架构和云边协同,为音视频、云游戏、元宇宙等场景带来了更好的用户体验和业务价值。

图片

讲师现场风采

肖潇提到,即构这种实时互动的业务场景,天然就是边缘计算很契合的方式,原因就是边缘计算在降低时延、成本优化、提升并发、降低故障影响等方面有十分明显的优势。即构科技基于在实时互动领域的多年技术积累与实践,落地了云边协同的全球音视频云架构:多云基础设施、边缘容器、全球多中心、MSDN (Massive Serial Data Network)海量有序数据网络全球传输网络。这也帮助即构建立了 “生于云、长于云”的云原生音视频云服务,提升实时音视频云服务质量和运维效率,通过多云 serverless 做好容灾, 并进一步优化成本。

下面是肖潇在现场演讲的内容回顾:

边缘计算遇到的问题及落地挑战

即构使用边缘计算多年,在最开始我们的主要策略是租赁全球各种大规模的虚拟机和物理机。不同业务、不同的客户集群各自独占边缘算力,进行自己系统内部的资源冗余,导致边缘整体的利用率不高,成本压力大。其次,面向边缘没有统一的运维体系,各业务建设自己的业务支持系统,容量管理、扩缩容不统一效率比较低下。另外,中心部署的服务已经全面云原生化,运维团队在管理中心和边缘的服务需要在两种思维方式以及在两套运维设施中切换,这很割裂,期待有一些新的变化。

我们希望云原生的边缘容器能带来三方面的变化:

  • 通过底层计算资源复用最大化的利用算力和带宽实现成本的极致优化;
  • 通过云原生的弹性伸缩、多容器管理、版本更新机制大幅提升运维效率和可靠性;
  • 通过边缘容器的落地,构建一个统一的云边一体化的云原生基础设施。

然而,企业在落地边缘容器时会面临诸多挑战,首先,业界没有统一的边缘容器标准,从产品维度,他们都拥有相同的产品关键字:云边协同、边缘自治、单元化部署。我们预研梳理落地边缘容器的一些挑战,例如,音视频业务是强有状态服务,如何云原生化?不同服务规格差异较大,如何调度?音视频服务经常是两个进程协同完成工作,如何做到 pod 多进程完全独立的灰度发布?云边网络中断业务如何处理?云边通信的流量成本能否降到很低?如何提升运维效率等等挑战。

实时互动业务的落地实践

带着这些挑战进行思考,即构基于在实时互动领域的多年技术积累与实践,落地了云边协同的全球音视频云架构:多云基础设施、边缘容器、全球多中心、MSDN 全球传输网络。即构没有做成完全分布式去中心化的架构,是因为我们的业务是全球实时互动场景,500+ 机房之间 full mesh 进行同步效率太低,有中心的参与能大幅提升信息同步效率。

图片

云边协同的全球音视频云架构

1、音视频服务云原生化

音视频服务是强有状态业务

音视频服务有点类似游戏服务器,有玩家在玩游戏,不能轻易更新和缩容。音视频服务器除了有海量的用户接入,还有服务器之间的级联。服务器级联形成了一个流的分发网络,服务器节点的变化会导致分发网络的重建。虽然会通过 SDK 重试等策略降低这个网络重建的成本和对用户体验的影响,但是还是希望发布、扩缩容这些运维操作能尽量降低对音视频业务的影响。

具体来看,希望做到 IP 端口固定的无损直连;镜像更新,pod 不重建,降低 pod 重建重新调度耗时对业务影响;希望容器更新过程中,镜像拉取耗时是极短的,来降低推拉流的中断。有状态业务的扩容需要有多种业务指标来触发,缩容需要很精确的控制。一个 pod 内有两个容器,引擎容器和配套业务处理容器,希望这两个容器能够做到各自独立发布。有一些定向运维操作的需求。

主机网络减少网络损耗

我们选择主机网络模式来减少网络损耗,这样的好处是不需要经过容器额外的网络虚拟化层,但是也带来了端口冲突的问题。我们新建了一个 Daemonset,端口管理的服务,在节点上 pod 启动的时候负责进行端口的分配。

工作负载的选择、更新策略

前面我们提到 K8s 自带的 workload 不满足音视频业务的生命周期管理,在这里我们选择了 openKruise 的 cloneset 作为我们的工作负载,关注它主要是看中它如下几块的能力:原地升级、指定 pod 缩容、sidecarset 实现 sidecar 容器部署的能力、镜像预热的能力。

图片

如上图所示,音视频引擎作为主容器、配套业务处理容器作为 sidecar 容器 ,sidecar 容器通过 webhook 注入到 pod 中,通过 cloneset 和 sidecarset 两种资源实现两个容器的独立灰度发布。社区的版本 sidecarset 并不支持 env from metadata 的原地升级,我们完善了这个能力,后续也会提 PR 贡献给到社区。基于 cloneset 和 sidecarset,我们能进行下图所示的基于 partition 的百分比多阶段灰度发布。

图片

原地升级不能解决所有的更新问题

我们知道原地升级的触发条件主要是 spec container 的镜像变化以及 env from metadata 中 label 和注解的变化,但是 cloneset yaml 的其他字段需要修改的时候我们怎么能做到避免 pod 的重建从而使对业务的影响接近于零呢,即还能保持 IP 端口的稳定?对这种情况我们实现了一个 clonesetmigration 的 operator 来协调这个过程。

图片

镜像预热

我们在方案选型的时候对比分析了镜像预热和边缘 P2P 镜像分发这两种方式。对比的过程中我们发现 dragonfly 这种 P2P 镜像分发对于边缘场景运维还是偏复杂,因为它要求一个 P2P 网络中服务网络必须是互通的,那对于较大的边缘机房 P2P 网络是内网能有很好的效果,但对于多个较小的边缘机房又需要分区域组成一个外网的 P2P 网络,但是音视频又是高带宽的服务,为了不影响业务在节点和任务的维度都会要求有限速,明显的限速又影响到 P2P 镜像的拉取效果。于是回到了我们的核心诉求,原地升级时镜像拉取的耗时足够低,那 OpenKruise 每一阶段灰度发布时 node 的提前镜像预热+镜像仓库多地域部署已经能满足我们的诉求。

音视频场景下的弹性伸缩

音视频场景下弹性伸缩我们区别于社区的 HPA 方案,我们做的是带音视频业务状态的伸缩方案,扩容会多维度指标综合评估,从带宽、PPS、推拉流数、CPU、内存等多指标进行计算,缩容有点特殊,在有用户在推拉流的时候不能直接进行缩容操作,需要做业务的无损清理,不然容易带来用户的黑屏、卡顿。如果我们设计了 pod 业务状态的状态机,有初始化、已分配、墓碑态和等待被删除几种状态。其中墓碑态是关键的状态,进入这个状态会从业务层面不进行新请求和流量被调度进来等待流量的自然消亡,以及超时后的接近无损的驱赶和清理,当然如果墓碑态的过程中流量上涨会将业务状态回退到已分配状态继续服务业务。

2、质量和运维效率提升

在边缘容器的质量和运维效率提升方面,即构在成立之初就自研了“海量有序数据网络 MSDN”,实时探测网络质量,可以实现全球范围内优质的智能调度及路由,链路故障秒级恢复,大幅降低云边断网概率,提升数据传输速度及可靠性。即构还基于机器学习算法预测边缘机房未来利用率,生成扩容、缩容资源 node 数,然后基于这个推荐数据自动进行边缘节点购买/纳管、cordon/drain/节点退订,实现边缘资源池的智能化推荐、扩缩。此外,即构通过全球边缘容器控制面的多集群管理,实现全球资源统一管理。

肖潇还提到,关于云边协同的另一种有趣的方式——多云 Serverless 容灾。

当边缘容器控制面所在的中心 region 故障的时候,因为边缘自治的原因,边缘容器依旧可以正常运转,但是会影响到服务的扩容能力和容量水位。这个时候我们的一种容灾方式是通过在多云商不同中心机房的 serverless 集群的扩容进行这部分弹性容量的补齐。其次,用中心机房 Serverless 承载边缘资源池的突发溢出流量也非常有价值。这种溢出往往是临时性的突然打高,通过边缘带宽承载日常流量加 Serverless 流量计费承载突发流量,可以实现网络成本的最优组合。这里也充分用到了中心机房 Serverless 极致的弹性能力。

3、成本优化

边缘资源的最大化共享。使用边缘容器的边缘资源池能够做到不同的业务集群或业务角色能共享相同的资源池,通过整个资源池的资源冗余来避免在业务集群和服务维度各自的资源冗余。其次我们有全局多级资源池调度,上一级满了会溢出到下一级,实现在资源池全局资源的复用,和任意区域 N-2 机房资源的冗余。

资源调度策略。基于实时音视频场景思考,我们把默认的 Spread 调度策略改成 Binpack 调度策略,它会优先将 pod 调度到资源消耗较多的节点,多个 pod 会优先使用同一节点来提高整个资源的利用率,相较于虚拟机和物理机时代工作负载提升了一倍。

关于成本,即构关注如何大幅降低云边通信的流量的成本。以 OpenYurt 为例,首先要尽量减少 Service 和 EndpointSlice 的使用;第二,kubelet、daemonset list-watch 资源要 label 筛选本节点的数据,减少关注度;第三,以 Openyurt 为例,通过 Pool-Coordinator 和 Yurthub 的协同,实现单一节点池内云边只有一份 pool scope data 数据通信,当然 pool-coordinator 机制带来的好处,能区分出云边断网和节点宕机。

未来展望

未来即构会从三方面入手,一是探索更适合业务的调度算法, 对计算密集型的业务开放 CPU 拓扑感知调度的能力、提供 GPU 调度从而实现更全的业务覆盖;其次,通过更多工具链系统的建设和更多的能力抽象,进一步降低业务接入边缘容器的成本, 实现分钟级的部署;第三,把更多的能力在边缘侧进行提供。

即构将会继续推动边缘容器在全球音视频场景的进一步探索和应用!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/240564.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【性能调优】local模式下flink处理离线任务能力分析

文章目录 一. flink的内存管理1.Jobmanager的内存模型2.TaskManager的内存模型2.1. 模型说明2.2. 通讯、数据传输方面2.3. 框架、任务堆外内存2.4. 托管内存 3.任务分析 二. 单个节点的带宽瓶颈1. 带宽相关理论2. 使用speedtest-cli 测试带宽3. 任务分析3. 其他工具使用介绍 本…

【欢迎您的到来】这里是开源库get_local_info作者的付费专栏

您好, 我是带剑书生,开源库get_local_info的作者,欢迎您的到来,这里是我的付费专栏,会用更简洁的语言,更通俗的话语,来帮助您更好的学习rust,这里不仅仅讲解Rust在某些应用功能实现上…

Kafka的安装、管理和配置

Kafka的安装、管理和配置 1.Kafka安装 官网: https://kafka.apache.org/downloads 下载安装包,我这里下载的是https://archive.apache.org/dist/kafka/3.3.1/kafka_2.13-3.3.1.tgz Kafka是Java生态圈下的一员,用Scala编写,运行在Java虚拟机上&#xf…

【Internet Protocol】ip介绍,如何组局域网实现远程桌面和文件共享

文章目录 1.何为“上网”1.1 定义1.2 为什么连了WiFi就能上网了? 2.ip2.1 什么是ip2.2 为什么区分广域网和局域网,ip的唯一性2.3 如何查看设备的ip2.4 什么叫"ping"2.5 区分是否两个ip是否在同一局域网2.5.1 最稳妥的方式:ip&m…

Flutter 综述

Flutter 综述 1 介绍1.1 概述1.2 重要节点1.3 移动开发中三种跨平台框架技术对比1.4 flutter 技术栈1.5 IDE1.6 Dart 语言1.7 应用1.8 框架 2 Flutter的主要组成部分3 资料书籍 《Flutter实战第二版》Dart 语言官网Flutter中文开发者社区flutter 官网 4 搭建Flutter开发环境参考…

【印象深刻的实战经历】两次全国大学生数学建模经历分享

目录 🌼初次接触 初次参加培训 分享培训所得 比赛开始 🔥再次接触 参加校赛 机缘巧合 再次培训 比赛开始 📕技巧总结 从问题的实际意义分析大体上可分为 从问题的解决方法上分析 做国赛题目的步骤 赛前准备 选题 寻找思路…

智能安全帽定制_基于联发科MT6762平台的智能安全帽方案

智能安全帽是一种具备多项功能的高科技产品,其功能集成了视频通话监控、高清图像采集、无线数据传输、语音广播对讲、定位轨迹回放、静默报警、危险救援报警、脱帽报警、碰撞报警、近电报警以及智能调度系统等,同时还支持多功能模块的自由添加&#xff0…

蓝桥杯每日一题----货物摆放

题目 分析 上来一看,三个for循环,从1到n,寻找满足lwhn的个数,但是这样根本跑不出来答案,n太大了,1e15的级别,O(n)的时间复杂度都不行,更何况是O(…

【Filament】材质系统

1 前言 本文主要介绍 Filament 的材质系统,官方介绍详见 → Filament Materials Guide。材质系统中会涉及到一些空间和变换的知识点,可以参考:【Unity3D】空间和变换、【Unity3D】Shader常量、变量、结构体、函数、【OpenGL ES】MVP矩阵变换、…

【USTC】verilog 习题练习 21-25

21 基于端口名称的实例化 题目描述 创建一 verilog 电路,实现对模块 mod_a 基于端口名称的实例化,如下图所示: 其中mod_a模块的代码为: module mod_a (output out1,output out2,input in1,input in2,input in3,in…

【JMeter】JMeter连OceanBase数据库

1、下载OB(OceanBase简称,下同),下载地址:https://www.oceanbase.com/softwarecenter-enterprise 2、将下载下来的jar包放到jmeter安装目录的 lib 目录下,或者打开JMeter客户端,在测试计划中引入…

Python ❀ 使用代码实现API接口调用详解

文章目录 1. 工具准备1.1. requests代码包1.2. BurpSuite抓包工具 2. 操作过程2.1. 一个简单的请求2.1.1. Burp获取响应2.1.2. 转发获取响应 2.2. 构造GET类型URL参数2.3. 构造请求头部2.4. 构造POST类型payload数据2.4.1. urlencoded格式2.4.2. json格式 本文主要讲解常用API接…

第九站(17天):C++IO流

文件IO流 对象:文件,控制台,特定数据类型stringstream (写数据输出流out,读数据输入流in) ofstream : ofstream outfile;//输出流:从键盘输出数据,写入到文件 //文件打开默认位ios::out//字节覆盖写 //可以截断设置为:ios::out | ios::trunc//将之前文件全部…

2024年1月【ORACLE战报】| 新年第一波OCP证书来了!

相关文章: 2023年12月【考试战报】|ORACLE OCP 19C考试通过 2023年10月【考试战报】|ORACLE OCP 19C考试通过 2023.7月最新OCP考试通过|微思-ORACLE官方授权中心 OCP 19C题库稳定!https://download.csdn.net/download/XMWS_IT/88309681?ops_request_…

Midjourney Prompt 常用参数列表

完整参数列表 参数名称调用方法使用案例注意事项V5V4V3niji版本在关键词后加空格,然后带上版本参数: --v 或者 —v--version 或者 —versionvibrant california poppies --v 5版本仅支持 1、2、3、4、5。长宽比在关键词后加空格,然后带上长…

【MySQL】权限控制

DCL-权限控制 查询权限 show grants for 用户名主机名;授予权限 grant 权限列表 on 数据库名.表名 to 用户名主机名;grant all on test.* to user%; %是通配符,表示任意主机。撤销权限 revoke 权限列表 on 数据库名.表名 from 用户名主机名;revoke all on test.*…

Angular系列教程之zone.js和NgZone

文章目录 什么是zone.jsZone的工作原理Zone的常见用途NgZone:Angular中的zone.js使用NgZone使用NgZone执行代码使用NgZone外部检测 结论 什么是zone.js 在Angular中,zone.js是一个非常重要的库,它为我们提供了一种跟踪和管理异步操作的机制。…

dubbo入门案例!!!

入门案例之前我们先介绍一下:zookeeper。 Zookeeper是Apacahe Hadoop的子项目,可以为分布式应用程序协调服务,适合作为Dubbo服务的注册中心,负责服务地址的注册与查找,相当于目录服务,服务提供者和消费者只…

阿里云云原生助力安永创新驱动力实践探索

云原生正在成为新质生产力变革的核心要素和企业创新的数字基础设施。2023 年 12 月 1 日,由中国信通院举办的“2023 云原生产业大会”在北京召开。在大会“阿里云云原生”专场,安永科技咨询合伙人王祺分享了对云原生市场的总览及趋势洞见,及安…

数美点选验证协议全面剖析

文章目录 目标网站分析请求动态JS无法调试代码混淆处理conf请求分析分析fverify请求整体代码分析getEncryptContent函数分析分析其他参数分析坐标算法 结束 目标网站 aHR0cHM6Ly9zZWN1cmUuZWxvbmcuY29tL3Bhc3Nwb3J0L2xvZ2luX2NuLmh0bWw/bmV4dHVybD1odHRwczovL3d3dy5lbG9uZy5jb…