重磅突发!OpenAI正式推出多模态GPT-4

大家好,今天这篇文章是我的好朋友阿法兔翻译的,她凌晨熬夜研究了一下 OpenAI 推出的 GPT-4,基本把所有发布的内容重点都读完了,分享给大家,希望能给你一些启发。

作者 |  OpenAI&TheVerge&Techcrunch

翻译 &分析| 阿法兔

01

亮点

*本文6000字左右

  • GPT-4可以接受图像和文本输入,而GPT-3.5只接受文本。

  • GPT-4在各种专业和学术基准上的表现达到 "人类水平"。例如,它通过了模拟的律师考试,分数约为应试者的前10%。

  • OpenAI花了6个月的时间,利用从对抗性测试项目以及ChatGPT中获得的经验,反复调整GPT-4,结果在事实性、可引导性和可控制方面取得了 "史上最佳结果"。

  • 在简单的聊天中,GPT-3.5和GPT-4之间的区别可能微不足道,但是当任务的复杂性达到足够的阈值时,区别就出来了,GPT-4比GPT-3.5更可靠,更有创造力,能够处理更细微的指令。

  • GPT-4能对相对复杂的图像进行说明和解释,比如说,从插入iPhone的图片中识别出一个Lightning Cable适配器(下文有图片)。

  • 图像理解能力还没有向所有OpenAI的客户开发,OpenAI正在与合作伙伴Be My Eyes进行测试。

  • OpenAI承认,GPT-4并不完美,仍然会对事实验证的问题产生错乱感,也会犯一些推理错误,偶尔过度自信。

  • 开源OpenAI Evals,用于创建和运行评估GPT-4等模型的基准,同时逐个样本检查其性能。

02

官宣文档

OpenAI已经正式推出GPT-4,这也是OpenAI在扩大深度学习方面的最新里程碑。GPT-4是大型的多模态模型(能够接受图像和文本类型的输入,给出文本输出),尽管GPT-4在许多现实世界的场景中能力不如人类,但它可以在各种专业和学术基准上,表现出近似人类水平的性能。

例如:GPT-4通过了模拟的律师考试,分数约为全部应试者的前10%。而相比之下,GPT-3.5的分数大约是后10%。我们团队花了6个月的时间,利用我对抗性测试项目以及基于ChatGPT的相关经验,反复对GPT-4进行调整。结果是,GPT-4在事实性(factuality)、可引导性(steerability)和拒绝超范围解答(非合规)问题( refusing to go outside of guardrails.)方面取得了有史以来最好的结果(尽管它还不够完美)

在过去两年里,我们重构了整个深度学习堆栈,并与Azure合作,为工作负荷从头开始,共同设计了一台超级计算机。一年前,OpenAI训练了GPT-3.5,作为整个系统的首次 "试运行",具体来说,我们发现并修复了一些错误,并改进了之前的理论基础。因此,我们的GPT-4训练、运行(自信地说:至少对我们来说是这样!)空前稳定,成为我们首个训练性能可以进行提前准确预测的大模型。随着我们继续专注于可靠扩展,中级目标是磨方法,以帮助OpenAI能够持续提前预测未来,并且为未来做好准备,我们认为这一点,对安全至关重要。

我们正在通过ChatGPT和API(您可以加入WaitList)发布GPT-4的文本输入功能,为了能够更大范围地提供图像输入功能,我们正在与合作伙伴紧密合作,以形成一个不错的开端。我们计划开源OpenAI Evals,也是我们自动评估AI模型性能的框架,任何人都可以提出我们模型中的不足之处,以帮助它的进一步的改进。

03

能力

在简单闲聊时,也许不太好发现GPT-3.5和GPT-4之间的区别。但是,当任务的复杂性达到足够的阈值时,它们的区别就出来了。具体来说,GPT-4比GPT-3.5更可靠,更有创造力,能够处理更细微的指令。

为了理解这两个模型之间的差异,我们在各种不同的基准上进行了测试,包括模拟最开始那些为人类设计的考试。通过使用最新的公开测试(就奥数和AP等等考试)还包括购买2022-2023年版的练习考试来进行,我们没有为这类考试给模型做专门的培训,当然,考试中存在很少的问题是模型在训练过程中存在的,但我们认为下列结果是有代表性的。

5b150da388a036dc780683cdeb6a08ad.png

8ee583659cd44f3e6b34fcee94fb911a.png

我们还在为机器学习模型设计的传统基准上,对GPT-4进行了评估。GPT-4大大超过现有的大语言模型,与多数最先进的(SOTA)模型并驾齐驱,这些模型包括针对基准的制作或额外的训练协议。

fd96caed869f6d850b256efdc58f5e8c.png

由于现有的大多数ML基准是用英语编写的,为了初步了解其他语言的能力,我们使用Azure Translate将MMLU基准:一套涵盖57个主题的14000个选择题,翻译成了各种语言。在测试的26种语言中的24种语言中,GPT-4的表现优于GPT-3.5和其他大模型(Chinchilla,PaLM)的英语表现,这种优秀表现还包括类似拉脱维亚语、威尔士语和斯瓦希里语等等。

d732ae758e06daa8cac4df6d1fd8ff40.png

我们一直在内部使用GPT-4,发现它对支持、销售、内容审核和编程等功能会产生很大影响,我们还在用它来协助人类评估AI的输出,这就是我们调整战略的第二阶段的开始。

04

视觉输入

GPT-4可以接受文本和图像的提示语(prompt),这与纯文本设置平行。比如说,可以让用户指定任何视觉或语言任务,它可以生成文本输出(自然语言、代码等),给定的输入包括带有文字和照片的文件、图表或屏幕截图,GPT-4表现出与纯文本输入类似的能力。此外,还可以应用在为纯文本语言模型开发的测试时间技术,包括少数几个镜头和CoT的Prompting,不过目前图像输入仍然属于研究方面预览,没有像C端公开产品。

下列图片显示了一个 "Lightning Cable "适配器的包装,有三个面板。

c5c4325fbe60e35742f74f52ff42dd94.png

656ec0bad2acc4067505215f8558d9b2.png

面板1:一个带有VGA接口(通常用于电脑显示器的大型蓝色15针接口)的智能手机插在其充电端口。

面板2:"Lightning Cable "适配器的包装上有一张VGA接口的图片。

面板3:VGA连接器的特写,末端是一个小的Lightning连接器(用于为iPhone和其他苹果设备充电)。

这张图片的搞笑性质来自于将一个大的、过时的VGA连接器插入一个小的、现代的智能手机充电端口..因此看起来很荒谬

通过在一套狭窄的标准学术视觉基准上,对GPT-4的性能进行评估,并且对它进行预览。然而,这些数字并不能代表其的能力范围,因为我们发现,这个模型能够处理很多的新的和令人兴奋的任务,OpenAI计划很快发布进一步的分析和评估数字,以及对测试时间技术效果的彻底调查结果。

05

可控制的 AI 

我们一直在努力实现关于定义AI行为那篇文章中,所概述的计划的每个方面,包括AI的可控制性。与经典的ChatGPT个性的固定言语、语气和风格不同,开发者(很快就是所有的ChatGPT用户)现在可以通过在 "系统 "消息中描述这些方向,来规定自己的AI的风格和任务。系统消息允许API用户在范围内,大幅对用户体验进行定制,我们将持续改进。

06

局限性

尽管能力惊人,不过,GPT-4仍存在与早期GPT模型类似的限制。最重要的是,它仍然不是完全可靠的(比如说,它会对事实产生 "幻觉",并出现推理错误)。在使用语言模型的输出时,特别是在高风险的情况下,应该非常小心谨慎,比如说:需要人类审查,完全避免高风险的使用)以及需要与特定的使用案例的需求相匹配。

尽管各类情况仍然存在,但相较于以前的模型(这些模型本身也在不断改进),GPT-4大大减少了hallucinations(意思是网络错觉,这里指的是一本正经的胡说八道)。在我们内部的对抗性事实性评估中,GPT-4的得分比我们最新推出的GPT-3.5高40%。

7a1c3493260d7b2f41bb9b5941d0ee91.png

07

可控制的 AI 

GPT-4的基础模型在这项任务中只比GPT-3.5略胜一筹;然而,在经过RLHF的后期训练后(应用我们对GPT-3.5使用的相同过程),却有很大差距。该模型在其输出中会有各种偏差,我们在这些方面已经取得了进展,但仍有更多工作要做。根据我们最近的博文,我们的目标是使我们建立的人工智能系统具有合理的默认行为,以反映广泛的用户价值观,允许这些系统在广泛的范围内被定制,并获得公众对这些范围的意见。

GPT-4通常缺乏对其绝大部分数据截止后(2021年9月)发生的事件的了解,也不会从其经验中学习。它有时会犯一些简单的推理错误,这似乎与这么多领域的能力不相符,或者过于轻信用户的明显虚假陈述。有时它也会像人类一样在困难的问题上失败,例如在它产生的代码中引入安全漏洞。GPT-4也可能在预测中自信地犯错。

08

风险和缓解措施

我们一直在对GPT-4进行迭代,使其从训练开始就更加安全,保持一致性,我们所做的努力包括预训练数据的选择和过滤、评估,邀请专家参与,对模型安全改进、监测,以及执行。

GPT-4与过去的模型会存在类似风险,如生产有害的建议、错误代码或不准确的信息。然而,GPT-4的额外能力还导致了新的风险面。为了明确这些风险的具体情况,我们聘请了50多位来自人工智能对接风险、网络安全、生物风险、信任和安全以及国际安全等领域的专家对该模型进行对抗性测试。他们的参与,使我们能够测试模型在高风险领域的行为,这些领域需要专业知识来评估。来自这些领域专家的反馈和数据,为我们缓解和改进模型提供了依据。比如说,我们已经收集了额外的数据,以提高GPT-4拒绝有关如何合成危险化学品的请求的能力。

GPT-4在RLHF训练中加入了一个额外的安全奖励信号,通过训练模型来拒绝对此类内容的请求,从而减少有害产出(由我们的使用指南定义)。奖励是由GPT-4的分类器提供的,它能够判断安全边界和安全相关提示的完成方式。为了防止模型拒绝有效的请求,我们从不同的来源(例如,标记的生产数据,人类的红队,模型生成的提示)收集多样化的数据集,并在允许和不允许的类别上应用安全奖励信号(存在正值或负值)。

与GPT-3.5相比,我们的缓解措施大大改善了GPT-4的许多安全性能。与GPT-3.5相比,我们将模型对非法内容的请求的响应倾向,降低了82%,而GPT-4对敏感请求(如医疗建议和自我伤害)的响应符合我们的政策的频率提高了29%

总的来说,我们的模型级干预措施增加了诱发不良行为的难度,但仍然存在 "越狱 "的情况,以产生违反我们使用指南的内容。随着人工智能系统的 风险的增加,在这些干预措施中实现极高的可靠性将变得至关重要。目前重要的是,用部署时间的安全技术来补充这些限制,如想办法监测。

GPT-4和后续模型,很有可能对社会产生正面或者负面的影响,我们正在与外部研究人员合作,以改善我们对潜在影响的理解和评估,以及建立对未来系统中可能出现的危险能力的评估。我们将很快分享我们对GPT-4和其他人工智能系统的潜在社会和经济影响的更多思考。

09

训练过程

和之前的GPT模型一样,GPT-4基础模型的训练是为了预测文档中的下一个单词,并使用公开的数据(如互联网数据)以及我们授权的数据进行训练。这些数据是来自于极大规模的语料库,包括数学问题的正确和错误的解决方案,弱的和强的推理,自相矛盾的和一致的声明,以及种类繁多的意识形态和想法。

因此,当被提示有一个问题时,基础模型可以以各种各样的方式作出反应,而这些反应可能与用户的意图相去甚远。为了使其与用户的意图保持一致,我们使用人类反馈的强化学习(RLHF)对模型的行为进行微调。

注意,模型的能力似乎主要来自于预训练过程,RLHF并不能提高考试成绩(如果不主动努力,它实际上会降低考试成绩)。但是对模型的引导来自于训练后的过程,基础模型需要Prompt Engineering,甚至知道它应该回答问题。

10

可预测的扩展

GPT-4项目的一大重点是建立一个可预测扩展的深度学习栈。主要原因是,对于像GPT-4这样非常大的训练运行,做大量的特定模型调整是不可行的。我们对基础设施进行了开发和优化,在多种规模下都有非常可预测的行为。为了验证这种可扩展性,我们提前准确地预测了GPT-4在我们内部代码库(不属于训练集)中的最终损失,方法是通过使用相同的方法训练的模型进行推断,但使用的计算量要少10000倍。

我们认为,准确预测未来的机器学习能力是安全的一个重要部分,相对于其潜在的影响,它没有得到足够的重视(尽管我们已经被几个机构的努力所鼓舞)。我们正在扩大我们的努力,开发一些方法,为社会提供更好的指导,让人们了解对未来系统的期望,我们希望这成为该领域的一个共同目标。

11

开放式人工智能评估

我们正在开源OpenAI Evals,这是我们的软件框架,用于创建和运行评估GPT-4等模型的基准,同时逐个样本检查其性能。我们使用Evals来指导我们模型的开发(包括识别缺点和防止退步),我们的用户可以应用它来跟踪不同模型版本(现在将定期推出)和不断发展的产品集成的性能。例如,Stripe已经使用Evals来补充他们的人工评估,以衡量他们的GPT驱动的文档工具的准确性。

因为代码都是开源的,Evals支持编写新的类来实现自定义的评估逻辑。然而,根据我们自己的经验,许多基准都遵循一些 "模板 "中的一个,所以我们也包括了内部最有用的模板(包括一个 "模型分级Evals "的模板--我们发现GPT-4有令人惊讶的能力来检查自己的工作)。一般来说,建立一个新的评估的最有效方法是将这些模板中的一个实例化,并提供数据。我们很高兴看到其他人能用这些模板和Evals更广泛地建立什么。

我们希望Evals成为一个分享和众包基准的工具,最大限度地代表广泛的故障模式和困难任务。作为后续的例子,我们已经创建了一个逻辑谜题评估,其中包含GPT-4失败的十个提示。Evals也与实现现有的基准兼容;我们已经包括了几个实现学术基准的笔记本和一些整合CoQA(小的子集)的变化作为例子。

我们邀请大家使用Evals来测试我们的模型,并提交最有趣的例子。我们相信Evals将成为使用和建立在我们的模型之上的过程中不可或缺的一部分,我们欢迎直接贡献、问题和反馈。

12

ChatGPT Plus

ChatGPT Plus用户将在chat.openai.com上获得有使用上限的GPT-4权限。我们将根据实际需求和系统性能调整确切的使用上限,但我们预计容量将受到严重限制(尽管我们将在接下来的几个月里扩大和优化)。

根据我们看到的流量模式,我们可能会为更高的GPT-4使用量引入一个新的订阅级别,我们也希望在某个时候提供一定数量的免费GPT-4查询,这样那些没有订阅的用户也可以尝试。

API

要获得GPT-4的API(使用与gpt-3.5-turbo相同的ChatCompletions API),请可以去OpenAI的官方Waitlist上注册。

13

结论

我们期待着GPT-4成为一个有价值的工具,通过为许多应用提供动力来改善人们的生活。还有很多工作要做,我们期待着通过社区的集体努力,在这个模型的基础上进行建设、探索和贡献,共同对模型进行改进。

文/转自「阿法兔研究笔记」

参考文献:

1.https://openai.com/research/gpt-4

2.https://techcrunch.com/2023/03/14/openai-releases-gpt-4-ai-that-it-claims-is-state-of-the-art/

3.https://www.theverge.com/2023/3/14/23638033/openai-gpt-4-chatgpt-multimodal-deep-learning

点击下方公众号卡片,关注我

在公众号对话框,回复关键字 “1024”

免费领取副业赚钱实操教程

16845b7f1f0c4ffa136cfcbd56e1d3f6.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/24104.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Chatbox - 一款适用于 GPT-4 / GPT-3.5 (OpenAI API) 的桌面应用程序

简介 给大家推荐一款适用于 GPT-4 / GPT-3.5 (OpenAI API) 的桌面应用程 ChatBox,开源的 ChatGPT API (OpenAI API) 跨平台桌面客户端,Prompt 的调试与管理工具,也可以用作 ChatGPT Plus 平替。 下载 ► chatBox 下载安装 ⇲ 为什么不直接…

是兄弟就来找 ChatGPT 漏洞,OpenAI:最高赏金 2 万刀

这是「进击的Coder」的第 822 篇技术分享 作者:克雷西 发自 凹非寺 来源:量子位(ID:QbitAI) “ 阅读本文大概需要 5 分钟。 ” 现在,给 ChatGPT 找漏洞有钱挣了。 今天凌晨,OpenAI 宣布开启漏洞…

chatgpt赋能python:Python配色方案:让您的代码更易于阅读和管理

Python配色方案:让您的代码更易于阅读和管理 Python是一种广泛使用的编程语言,它具有简单易学、功能强大的特点。但是,当您开始编写更复杂的代码时,遇到的主题和配色问题可能会影响代码的可读性和管理能力。 为了解决这个问题&a…

LLM系列 | 09: 基于ChatGPT构建智能客服系统(query分类安全审核防注入)

简介 竹斋眠听雨,梦里长青苔。门寂山相对,身闲鸟不猜。小伙伴们好,我是卖热干面的小女孩。紧接前面几篇ChatGPT Prompt工程系列文章: 04:ChatGPT Prompt编写指南05:如何优化ChatGPT Prompt?06:ChatGPT Prompt实践&am…

Rabbitmq使用笔记

前言 mq的优点:异步提速、解耦、流量削峰 mq的缺点: mq宕机可能导致消息丢失、消费者未成功消费如果保证整个系统架构的事务安全、消息可能被重复消费出现幂等问题、消息未被消费到引发死信问题、消息出现消费延迟或消费异常引发的顺序消费错乱问题...…

Dapr,可能是传统应用转向微服务式应用最快的技术路线

一、开篇小记 过去的一段时间,一直在赶一些项目的进度,再加上前阵子的封控,一直没有时间静下心来好好整理和总结。从这周开始,总算有时间整理点东西了,就还是继续折腾了一些关于微服务的知识点。 由于我本人呢&#…

大模型 NLP 算法 大汇总

大模型 & NLP & 算法 大汇总 订阅本专栏【大模型 & NLP & 算法 知识大礼包】,即可获取博主多年积累的关于 【大模型 & NLP & 算法】 全部资料,只要59.9!订阅成功后请主动联系博主索要资料~ 目前大模型和…

关于midjourney、novelai的订阅购买

midjourney 最近人工智能非常火热,有chatgpt、midjourney及novelai等等,在不同领域都应用广泛,关于订阅购买,这边做个记录。 购买midjourney 注册discord账户,进入社区,直接访问公共服务器,进…

Unity接入大模型(小羊驼Vicuna,vLLM,ChatGPT等)

实现在Unity内部的大模型访问,我也是第一次接触Unity中通过大模型url访问。此博客面向新手,旨在给大家简单理解大模型POST和GET过程,还有实现简单的大模型访问。 参考博客:什么是chatGPT?Unity结合OpenAI官方api实现类…

ChatGPT 的工作原理:深入探究

本文首发于微信公众号:大迁世界, 我的微信:qq449245884,我会第一时间和你分享前端行业趋势,学习途径等等。 更多开源作品请看 GitHub https://github.com/qq449245884/xiaozhi ,包含一线大厂面试完整考点、资料以及我的…

ChatGPT私人订制!只需把文档一键上传,免费可玩

衡宇 发自 凹非寺量子位 | 公众号 QbitAI 想不想简单轻松地拥有一个私人订制GPT? 不如试试askwise,只需要上传word、pdf等各种文档,就能生成个性化知识库,然后AI在你的知识库中上下求索,进行回答。 浅试了一下&#xf…

台大李宏毅报告:ChatGPT (可能)是怎麼煉成的 - GPT 社會化的過程

台大李宏毅报告:ChatGPT (可能)是怎麼煉成的 - GPT 社會化的過程 ChatGPT官方Blog:ChatGPT未公布论文——根据兄弟模型InstructGPT论文进行猜想:(1)Chat GPT的學習四階段1.學習文字接龍2.人類老…

如何使用chatgpt生成精美PPT提高工作效率

本教程收集于:AIGC从入门到精通教程 如何快速生成精美PPT提高工作效率 一、ChatGPT生成markdown源代码 二、Mindshow登录/注册 三、导入markd

达摩院榜首模型人脸检测MogFace CVPR论文深入解读

团队模型、论文、博文、直播合集,点击此处浏览 一、开源 1.)论文链接:MogFace: Towards a Deeper Appreciation on Face Detection 2.)模型&代码:https://modelscope.cn/models/damo/cv_resnet101_face-detecti…

GTC 2023 | 「皮衣刀客」黄仁勋畅谈 AI Top 5,科学计算、生成式 AI、Omniverse 榜上有名

内容一览:北京时间 3 月 21 日 23:00,英伟达创始人兼 CEO 黄仁勋在 GTC 2023 上发表主题演讲,介绍了生成式 AI、元宇宙、大语言模型、云计算等领域最新进展。 关键词:英伟达 黄仁勋 GTC 2023 「Don’t Miss This Defining Momen…

《WebRTC系列》实战 Web 端支持 h265 硬解

1、背景 Web 端实时预览 H.265 需求一直存在,但由于之前 Chrome 本身不支持 H.265 硬解,软解性能消耗大,仅能支持一路播放,该需求被搁置。 去年 9 月份,Chrome 发布 M106 版本,默认开启 H.265 硬解&#xf…

极客公园对话 Zilliz 星爵:大模型时代,需要新的「存储基建」

大模型在以「日更」进展的同时,不知不觉也带来一股焦虑情绪:估值 130 亿美元的 AI 写作工具 Grammarly 在 ChatGPT 发布后网站用户直线下降;AI 聊天机器人独角兽公司 Character.AI 的自建大模型在 ChatGPT 进步之下,被质疑能否形成…

云平台的ChatGLM部署

最近ChatGPT很火,国内清华也发布了ChatGLM,于是想在云平台上实现一下小型的ChatGLM。目前准备在趋动云这个平台上试试ChatGLM-6B-int8。 目前ChatGLM-6B-int8显存最少需要10G 可以参考GitHub - THUDM/ChatGLM-6B: ChatGLM-6B: An Open Bilingual Dialo…

高通Ziad Asghar:AI处理的重心从云端向边缘侧转移,智能手机是最佳平台 | MEET 2023...

萧箫 整理自 MEET 2023量子位 | 公众号 QbitAI 从Stable Diffusion到ChatGPT,这半年AI算法应用可谓突飞猛进。 但对于硬件领域而言,AI计算的下一个突破口或未来趋势究竟是什么? 尤其是AI应用最大的领域之一——移动端,大量AI算法在…

Stable Diffusion免费(三个月)通过阿里云轻松部署服务

温馨提示:划重点,活动入口在这里喔,不要迷路了。 其实我就在AIGC_有没有一种可能,其实你早就在AIGC了?阿里云邀请你,体验一把AIGC级的毕加索、达芬奇、梵高等大师作画的快感。阿里云将提供免费云产品资源&…