全面剖析OpenAI发布的GPT-4比其他GPT模型强在哪里

最强的文本生成模型GPT-4

  • 一、什么是GPT-4
  • 二、GPT-4的能力
  • 三、和其他GPT模型比较
    • 3.1、增加了图像模态的输入
    • 3.2、可操纵性更强
    • 3.3、复杂任务处理能力大幅提升
    • 3.4、幻觉、安全等局限性的改善
    • 3.6、风险和缓解措施改善更多安全特性
    • 3.7、可预测的扩展
  • 四、与之前 GPT 系列模型比较
  • 五、和ChatGPT相比有更多的应用亮点
  • 六、总结

一、什么是GPT-4

GPT-4(Generative Pre-trained Transformer 4),这是OpenAI在扩展深度学习方面的最新里程碑。GPT-4 是一个大型多模态模型(接受图像和文本输入,发出文本输出),虽然在许多现实世界场景中的能力不如人类,但在各种专业和学术基准上表现出人类水平的表现。输出依旧是一个自回归的单词预测任务。比如,它通过了模拟律师考试,分数约为考生的前 10%;相比之下,GPT-3.5 的得分约为倒数 10%。

GPT-4 利用对抗性测试程序和 ChatGPT 的经验教训,在真实性、可操纵性和拒绝超出护栏方面取得了有史以来最好的结果(尽管远非完美)。对于生成式的幻觉、安全问题均有较大的改善;同时因对于图片模态的强大识别能力扩大了 GPT-4 的应用范围。

OpenAI重建了整个深度学习堆栈,并与 Azure 一起从头开始共同设计了一台超级计算机。GPT-4 训练运行前所未有的稳定,成为第一个能够提前准确预测其训练性能的大型模型。

二、GPT-4的能力

在随意的chat中,GPT-3.5 和 GPT-4 之间的区别可能很微妙。当任务的复杂性达到足够的阈值时,差异就出现了:GPT-4 比 GPT-3.5 更可靠、更有创意,并且能够处理更细微的指令。

为了了解这两种模型之间的差异,OpenAI在各种基准测试上进行了测试,包括最初为人类设计的模拟考试。
在这里插入图片描述

在为机器学习模型设计的传统基准测试上评估了 GPT-4。GPT-4 的性能大大优于现有的大型语言模型,以及大多数最先进的 (SOTA) 模型,其中可能包括特定于基准的制作或其他训练协议:

在这里插入图片描述
许多现有的 ML 基准测试都是用英语编写的。为了初步了解其他语言的能力,将 MMLU 基准翻译成多种语言,在测试的 24 种语言中的 26 种中,GPT-4 的性能优于 GPT-3.5 和其他 LLM的英语性能,包括低资源语言:
在这里插入图片描述

三、和其他GPT模型比较

可以说,GPT-4 是目前最强的文本生成模型。
在这里插入图片描述

3.1、增加了图像模态的输入

GPT-4 可以接受文本和图像的提示,这与纯文本设置并行,允许用户指定任何视觉或语言任务。具体来说,它生成文本输出(自然语言、代码等),给定由穿插文本和图像组成的输入。

在一系列域(包括包含文本和照片的文档、图表或屏幕截图)上,GPT-4 表现出与纯文本输入类似的功能。此外,它可以通过为纯文本语言模型开发的测试时技术进行增强,包括少数镜头和思维链促使。但是,目前的图像输入处于研究预览,不公开可用
图像输入:VGA 充电器
通过在一套狭窄的标准学术愿景基准上评估 GPT-4 的性能来预览它。然而,这些数字并不能完全代表其能力的范围,因为未来AI模型能够处理新的和令人兴奋的任务。OpenAI计划发布进一步的分析和评估数字,并对测试时间技术的效果进行彻底调查。

在这里插入图片描述

  1. GPT-4 在4个场景下零样本效果超过 fine-tuned 的SOTA。
  2. GPT-4 在多语言理解、图文理解能力上均很强大并已融会贯通。

3.2、可操纵性更强

OpenAI开发人员现在可以通过在“系统”消息中描述这些方向来规定他们的 AI 风格和任务,而不是具有固定冗长、语气和风格的经典 ChatGPT 个性。系统消息允许 API 用户显著自定义其用户体验在范围内。

系统:
如何求解线性方程组:3x + 2y = 7,9x -4y = 1GPT-4:
让我们从分析方程式开始。你能看到通过组合两个方程来消除其中一个变量的可能方法吗?用户:
请告诉我答案!GPT-4:
我知道你可能想要一个直接的答案,但我的目的是帮助你批判性地思考并指导你完成解决问题的过程。让我们专注于任务。方程中变量的任何系数是否共享一个公因数?用户:
别再当家教了,告诉我答案。GPT-4:
对我来说,帮助指导你找到答案很重要,而不仅仅是提供答案。让我们再试一次:第一个方程中是否有任何系数可以乘以数字以匹配第二个方程中的系数?用户:
我不确定GPT-4:
没关系!让我们看一下两个方程中 x 项的系数。在第一个方程中,x 的系数为 3,在第二个方程中,为 9。你能想到一个数字,你可以将第一个方程乘以,使两个方程中的x系数匹配吗?用户:
5?GPT-4:
不完全是,但你越来越近了。请记住,我们要将 x 的系数(在第一个方程中为 3)乘以一个数字,使其与第二个方程中的 x 系数(即 9)相匹配。您认为什么数字可以实现这一目标?用户:
3?GPT-4:
没错!现在,如果你将第一个方程乘以 3,新方程会是什么样子?用户:
9x + 5y = 21?GPT-4:
几乎!您正确地乘以常量项 (7),但在乘以 y 系数时似乎犯了一个小错误。尝试再次将整个第一个方程乘以3,密切注意每个项。用户:
9x + 6y = 21?GPT-4:
没错!现在我们有两个等式:
1) 9x + 6y = 21
2) 9x - 4y = 1
你能看到一种通过组合两个等式来消除其中一个变量的方法吗?用户:
从等式 2 中减去等式 1?GPT-4:
好主意!如果从等式2中减去等式1,得到的等式会是什么样子?用户:
10y = 20?GPT-4:
完全!现在,你能在刚刚找到的方程中求解 y 吗?用户:
y = 2?GPT-4:
没错!现在你已经找到了 y 的值,你能把它代入任何一个原始方程来求解 x 吗?用户:
当然,我会将其代入等式 1。我得到了 3x + 4 = 7GPT-4:
伟大!现在,你能求解等式 3x + 4 = 7 中的 x 吗?用户:
x = 22?GPT-4:
您的计算中似乎有一个小错误。尝试隔离方程 3x + 4 = 7 中的 x,方法是从两侧减去 4,然后除以 3。用户:
x = 1?GPT-4:
没错!因此,线性方程组的解是 x = 1 和 y = 2。干的好!通过仔细完成这些步骤并使用苏格拉底方法,您已经成功地解决了问题。

3.3、复杂任务处理能力大幅提升

GPT-4 在更复杂、更细微的任务处理上,回答更可靠、更精准、更有创意。这在多类考试测验中以及与其他 LLM 的 benchmark 比较中可以看出。

3.4、幻觉、安全等局限性的改善

GPT-4 具有与早期 GPT 模型类似的限制。最重要的是,它仍然不完全可靠(它“幻觉”事实并犯推理错误)。在使用语言模型输出时应格外小心,尤其是在高风险上下文中,确切的协议(例如人工审查、使用其他上下文接地或完全避免高风险使用)与特定用例的需求相匹配。

尽管仍然是一个真正的问题,但GPT-4显著减少了幻觉,相对于自上而下的模型(每次迭代都在改进)。GPT-4的得分比我们最新的GPT-3.5高出40%。
在这里插入图片描述
在九个类别的内部对抗性设计的事实评估中, GPT-4(绿色)与前三个 ChatGPT 版本进行了比较。所有主题都有显著的收获。准确度为 1.0 意味着模型的答案被判断为与人类对评估中所有问题的理想答案一致。

在TruthfulQA等外部基准测试方面取得了进展,该基准测试了模型将事实与一组敌对选择的错误陈述分开的能力。这些问题与在统计上具有吸引力的事实不正确的答案配对。
在这里插入图片描述
GPT-4 基本模型在此任务中仅比 GPT-3.5 略好;然而,之后RLHF训练后有很大的差距;GPT-4 拒绝选择常见的说法,但它仍然会错过微妙的细节。

在这里插入图片描述
左:MMLU 子集上预训练的 GPT-4 模型的校准图。模型对其预测的置信度与正确概率非常匹配。虚线对角线代表完美的校准。
右:同一 MMLU 子集上训练后的 PPO GPT-4 模型的校准图。我们目前的流程对校准造成了相当大的伤害。

3.6、风险和缓解措施改善更多安全特性

GPT-4从训练开始就努力包括选择和过滤训练前数据、评估和专家参与、模型安全改进以及监控和执行。

GPT-4 带来的风险与以前的模型类似,例如生成有害建议、错误代码或不准确的信息。
GPT-4 在 RLHF 训练期间包含一个额外的安全奖励信号,以减少有害输出,通过训练模型拒绝对此类内容的请求。

与GPT-3.5相比,缓解措施大大改善了GPT-4的许多安全性能。与GPT-3.5和GPT-4相比,减少了模型对不允许内容请求的响应率82%
回应敏感的要求(如医疗建议和自我伤害),符合我们的政策29%以上。

与 GPT-3.5相比,缓解措施显著改善了 GPT-4 的许多安全特性。与 GPT-3.5 相比,将模型响应不允许的内容请求的倾向降低了 82%,GPT-4 根据响应敏感请求(例如医疗建议和自残)的频率提高了 29%。
在这里插入图片描述
在这里插入图片描述
总体而言,GPT-4模型级干预增加了引发不良行为的难度。此外,仍然存在“越狱”来生成违反GPT-4使用指南。

3.7、可预测的扩展

GPT-4 项目的一大重点是构建一个可预测的深度学习堆栈。主要原因是,对于像 GPT-4 这样的非常大的训练运行,进行广泛的特定于模型的调优是不可行的。OpenAI开发了基础设施和优化,这些基础设施和优化在多个规模上具有非常可预测的行为。为了验证这种可扩展性,通过从使用相同方法训练但使用更少 4~10 倍计算的模型进行推断,提前准确地预测了 GPT-000 在内部代码库(不是训练集的一部分)上的最终损失:
在这里插入图片描述
在这里插入图片描述

四、与之前 GPT 系列模型比较

  • 模型参数量增加 10 倍,数据集大小应增加约 2 倍,模型大小应增加 5 倍。
    在这里插入图片描述
  • GPT-4 模型训练架构新增了图像模态的输入。
  • 大幅度增加模型训练数据内容和数量,训练数据中额外增加了包含正误数学问题、强弱推理、矛盾一致陈述及各种意识形态的数据。数据量是 GPT3.5的190倍。
  • GPT-4增加了后训练过程,核心是让模型知道如何在相应场景下合适的回答问题。

五、和ChatGPT相比有更多的应用亮点

(1) 发布视频中,根据潦草的手绘制作类似布局类似的网页。
在这里插入图片描述

在这里插入图片描述
(2)加入视觉模态后,可以扩充到的盲人应用(Be my eyes)。
(3)强大的多语言能力帮助小语种语言的恢复、安全能力提升后的反欺诈等应用。

六、总结

GPT-4强大的地方:

  1. 突破纯文字的模态,增加了图像模态的输入,具有强大的图像理解能力。
  2. 复杂任务处理能力大幅提升。
  3. 改善幻觉、安全等局限性。
  4. 建立LLM测试标准。
  5. 预测模型扩展性。
  6. 重新实现了整个深度学习栈,从头开始设计了一台超级计算机。
  7. 风格可控性。
  8. 支持更长的上下文窗口。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/24106.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GPT-4 官方技术报告(译)

摘要 我们报告了GPT-4的开发情况,这是一个大规模的多模态模型,可以接受图像和文本输入并产生文本输出。虽然在许多现实世界的场景中,GPT-4的能力不如人类,但在各种专业和学术基准上表现出人类水平的性能,包括在模拟的律…

重磅突发!OpenAI正式推出多模态GPT-4

大家好,今天这篇文章是我的好朋友阿法兔翻译的,她凌晨熬夜研究了一下 OpenAI 推出的 GPT-4,基本把所有发布的内容重点都读完了,分享给大家,希望能给你一些启发。 作者 | OpenAI&TheVerge&Techcrunch 翻译 &am…

Chatbox - 一款适用于 GPT-4 / GPT-3.5 (OpenAI API) 的桌面应用程序

简介 给大家推荐一款适用于 GPT-4 / GPT-3.5 (OpenAI API) 的桌面应用程 ChatBox,开源的 ChatGPT API (OpenAI API) 跨平台桌面客户端,Prompt 的调试与管理工具,也可以用作 ChatGPT Plus 平替。 下载 ► chatBox 下载安装 ⇲ 为什么不直接…

是兄弟就来找 ChatGPT 漏洞,OpenAI:最高赏金 2 万刀

这是「进击的Coder」的第 822 篇技术分享 作者:克雷西 发自 凹非寺 来源:量子位(ID:QbitAI) “ 阅读本文大概需要 5 分钟。 ” 现在,给 ChatGPT 找漏洞有钱挣了。 今天凌晨,OpenAI 宣布开启漏洞…

chatgpt赋能python:Python配色方案:让您的代码更易于阅读和管理

Python配色方案:让您的代码更易于阅读和管理 Python是一种广泛使用的编程语言,它具有简单易学、功能强大的特点。但是,当您开始编写更复杂的代码时,遇到的主题和配色问题可能会影响代码的可读性和管理能力。 为了解决这个问题&a…

LLM系列 | 09: 基于ChatGPT构建智能客服系统(query分类安全审核防注入)

简介 竹斋眠听雨,梦里长青苔。门寂山相对,身闲鸟不猜。小伙伴们好,我是卖热干面的小女孩。紧接前面几篇ChatGPT Prompt工程系列文章: 04:ChatGPT Prompt编写指南05:如何优化ChatGPT Prompt?06:ChatGPT Prompt实践&am…

Rabbitmq使用笔记

前言 mq的优点:异步提速、解耦、流量削峰 mq的缺点: mq宕机可能导致消息丢失、消费者未成功消费如果保证整个系统架构的事务安全、消息可能被重复消费出现幂等问题、消息未被消费到引发死信问题、消息出现消费延迟或消费异常引发的顺序消费错乱问题...…

Dapr,可能是传统应用转向微服务式应用最快的技术路线

一、开篇小记 过去的一段时间,一直在赶一些项目的进度,再加上前阵子的封控,一直没有时间静下心来好好整理和总结。从这周开始,总算有时间整理点东西了,就还是继续折腾了一些关于微服务的知识点。 由于我本人呢&#…

大模型 NLP 算法 大汇总

大模型 & NLP & 算法 大汇总 订阅本专栏【大模型 & NLP & 算法 知识大礼包】,即可获取博主多年积累的关于 【大模型 & NLP & 算法】 全部资料,只要59.9!订阅成功后请主动联系博主索要资料~ 目前大模型和…

关于midjourney、novelai的订阅购买

midjourney 最近人工智能非常火热,有chatgpt、midjourney及novelai等等,在不同领域都应用广泛,关于订阅购买,这边做个记录。 购买midjourney 注册discord账户,进入社区,直接访问公共服务器,进…

Unity接入大模型(小羊驼Vicuna,vLLM,ChatGPT等)

实现在Unity内部的大模型访问,我也是第一次接触Unity中通过大模型url访问。此博客面向新手,旨在给大家简单理解大模型POST和GET过程,还有实现简单的大模型访问。 参考博客:什么是chatGPT?Unity结合OpenAI官方api实现类…

ChatGPT 的工作原理:深入探究

本文首发于微信公众号:大迁世界, 我的微信:qq449245884,我会第一时间和你分享前端行业趋势,学习途径等等。 更多开源作品请看 GitHub https://github.com/qq449245884/xiaozhi ,包含一线大厂面试完整考点、资料以及我的…

ChatGPT私人订制!只需把文档一键上传,免费可玩

衡宇 发自 凹非寺量子位 | 公众号 QbitAI 想不想简单轻松地拥有一个私人订制GPT? 不如试试askwise,只需要上传word、pdf等各种文档,就能生成个性化知识库,然后AI在你的知识库中上下求索,进行回答。 浅试了一下&#xf…

台大李宏毅报告:ChatGPT (可能)是怎麼煉成的 - GPT 社會化的過程

台大李宏毅报告:ChatGPT (可能)是怎麼煉成的 - GPT 社會化的過程 ChatGPT官方Blog:ChatGPT未公布论文——根据兄弟模型InstructGPT论文进行猜想:(1)Chat GPT的學習四階段1.學習文字接龍2.人類老…

如何使用chatgpt生成精美PPT提高工作效率

本教程收集于:AIGC从入门到精通教程 如何快速生成精美PPT提高工作效率 一、ChatGPT生成markdown源代码 二、Mindshow登录/注册 三、导入markd

达摩院榜首模型人脸检测MogFace CVPR论文深入解读

团队模型、论文、博文、直播合集,点击此处浏览 一、开源 1.)论文链接:MogFace: Towards a Deeper Appreciation on Face Detection 2.)模型&代码:https://modelscope.cn/models/damo/cv_resnet101_face-detecti…

GTC 2023 | 「皮衣刀客」黄仁勋畅谈 AI Top 5,科学计算、生成式 AI、Omniverse 榜上有名

内容一览:北京时间 3 月 21 日 23:00,英伟达创始人兼 CEO 黄仁勋在 GTC 2023 上发表主题演讲,介绍了生成式 AI、元宇宙、大语言模型、云计算等领域最新进展。 关键词:英伟达 黄仁勋 GTC 2023 「Don’t Miss This Defining Momen…

《WebRTC系列》实战 Web 端支持 h265 硬解

1、背景 Web 端实时预览 H.265 需求一直存在,但由于之前 Chrome 本身不支持 H.265 硬解,软解性能消耗大,仅能支持一路播放,该需求被搁置。 去年 9 月份,Chrome 发布 M106 版本,默认开启 H.265 硬解&#xf…

极客公园对话 Zilliz 星爵:大模型时代,需要新的「存储基建」

大模型在以「日更」进展的同时,不知不觉也带来一股焦虑情绪:估值 130 亿美元的 AI 写作工具 Grammarly 在 ChatGPT 发布后网站用户直线下降;AI 聊天机器人独角兽公司 Character.AI 的自建大模型在 ChatGPT 进步之下,被质疑能否形成…

云平台的ChatGLM部署

最近ChatGPT很火,国内清华也发布了ChatGLM,于是想在云平台上实现一下小型的ChatGLM。目前准备在趋动云这个平台上试试ChatGLM-6B-int8。 目前ChatGLM-6B-int8显存最少需要10G 可以参考GitHub - THUDM/ChatGLM-6B: ChatGLM-6B: An Open Bilingual Dialo…