选择排序(二)——堆排序(性能)与直接选择排序

fe594ea5bf754ddbb223a54d8fb1e7bc.gif

目录

一.前言

二.选择排序

2.1 堆排序

2.2选择排序

2.2.1 基本思想

2.2.2直接选择排序

三.结语


8fb442646f144d8daecdd2b61ec78ecd.png一.前言

本文给大家带来的是选择排序,其中选择排序中的堆排序在之前我们已经有过详解所以本次主要是对比排序性能,感兴趣的友友可移步观看堆排:https://mp.csdn.net/mp_blog/creation/editor/133394741

码字不易,希望大家多多支持我呀!(三连+关注,你是我滴神!)

二.选择排序

2.1 堆排序

堆排序是值利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序要建小堆。

堆排序具体详解可以参考这篇文章:https://mp.csdn.net/mp_blog/creation/editor/133394741

们这里就先来测试一下堆排序与希尔的效率比较。

堆排序代码:

void AdjustDown(int* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){// 找出小的那个孩子if (child + 1 < n && a[child + 1] > a[child]){++child;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);// 继续往下调整parent = child;child = parent * 2 + 1;}else{break;}}
}void HeapSort(int* a, int n)
{// 向下调整建堆// O(N)for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(a, n, i);}// O(N*logN)int end = n - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);--end;}
}

 这是通过生成100000个随机值测试用的代码片段。

void TestOP()
{srand(time(0));const int N = 100000;int* a1 = (int*)malloc(sizeof(int) * N);int* a2 = (int*)malloc(sizeof(int) * N);int* a3 = (int*)malloc(sizeof(int) * N);int* a4 = (int*)malloc(sizeof(int) * N);int* a5 = (int*)malloc(sizeof(int) * N);int* a6 = (int*)malloc(sizeof(int) * N);int* a7 = (int*)malloc(sizeof(int) * N);for (int i = 0; i <N; i++){a1[i] = rand();a2[i] = a1[i];a3[i] = a1[i];a4[i] = a1[i];a5[i] = a1[i];a6[i] = a1[i];a7[i] = a1[i];}int begin1 = clock();//InsertSort(a1, N);int end1 = clock();int begin2 = clock();ShellSort(a2, N);int end2 = clock();int begin7 = clock();//BubbleSort(a7, N);int end7 = clock();int begin3 = clock();//SelectSort(a3, N);int end3 = clock();int begin4 = clock();HeapSort(a4, N);int end4 = clock();int begin5 = clock();//QuickSort(a5, 0, N - 1);int end5 = clock();int begin6 = clock();//MergeSort(a6, N);int end6 = clock();printf("InsertSort:%d\n", end1 - begin1);printf("ShellSort:%d\n", end2 - begin2);printf("BubbleSort:%d\n", end7 - begin7);printf("SelectSort:%d\n", end3 - begin3);printf("HeapSort:%d\n", end4 - begin4);printf("QuickSort:%d\n", end5 - begin5);printf("MergeSort:%d\n", end6 - begin6);free(a1);free(a2);free(a3);free(a4);free(a5);free(a6);free(a7);
}int main()
{TestOP();//TestBubbleSort();//TestHeapSort();//TestSelectSort();return 0;
}

测试完发现两者算法效率差不多

但是这里面是有一个前提的,就是里面很多数都是重复的,rand函数最多只能产生3万个不同的随机数。当我们追加数字到1亿个时:

堆排序还是会占有优势的。

而在逆序或顺序的情况下,希尔的效率会更高

for (int i = N-1; i >= 0; --i){a1[i] = i;a2[i] = a1[i];a3[i] = a1[i];a4[i] = a1[i];a5[i] = a1[i];a6[i] = a1[i];a7[i] = a1[i];}

2.2选择排序

2.2.1 基本思想

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

2.2.2直接选择排序

  • 在元素集合arr[i]--arr[n-1] 中选择关键码最大(小)的数据元素
  • 若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
  • 在剩余的arr[i]--arr[n-2](arr[i+1]--arr[n-1])集合中,重复上述步骤,直到集合剩余1个元素

这是正常版本,下面我们来搞一个优化版,遍历一次来选出最小和最大的。把最小放在左边,最大放在右边。

老规矩先实现单趟代码:走完一遍后标记好最大和最小

void SelectSort(int* a, int n)
{//单趟排序int maxi = 0;int mini = 0;for (int i = 1; i < n; i++){//在单趟里找出最大最小两个数if (a[i] > a[maxi]){maxi = i;}if (a[i] < a[mini]){mini = i;}}}

void SelectSort(int* a, int n)
{//整体排序与交换int begin = 0;int end = n - 1;while (begin < end){//单趟排序int maxi = begin;int mini = begin;for (int i = begin+1; i <=end; i++){//在单趟里找出最大最小两个数if (a[i] > a[maxi]){maxi = i;}if (a[i] < a[mini]){mini = i;}}Swap(&a[begin], &a[mini]);Swap(&a[end], &a[maxi]);begin++;end--;}
}

走完单趟找出最大值与最小值的时候就开始进行交换,按最小值放右边,最大值放左边的原则。

这里我们统一把最左边设成begin,最右边设置成end。

而整体排序的核心就在于begin与end的变化,在我们的for循环里i的范围是由begin与end来控制的,这代表我们从[begin,end]里寻找最大与最小值

当把该趟的最大最小放置在两侧后,对排序范围进行缩减通过begin++与end--的方式圈定排序范围,那么我们的下一次单趟范围就在[begin+1,end-1]之间寻找最大与最小,再放置在两侧(最小在begin+1处,最大在end-1处)。

就这样以此类推,两侧就会开始形成序列达到排序的效果。

但这样还不够完整,经过调试我们发现还无法排序,因为还有一个小bug

最开始我们是mini与begin交换即9与1交换,后面按理应该是end与maxi交换,但此时因为9与1交换导致原本指向最大9的maxi不再指向9,而是交换过来的1,导致最后一步是3与1进行交换,所以才会无法排序。

void SelectSort(int* a, int n)
{//整体排序与交换int begin = 0;int end = n - 1;while (begin < end){//单趟排序int maxi = begin;int mini = begin;for (int i = begin+1; i <=end; i++){//在单趟里找出最大最小两个数if (a[i] > a[maxi]){maxi = i;}if (a[i] < a[mini]){mini = i;}}Swap(&a[begin], &a[mini]);if (maxi == begin){maxi = mini;}Swap(&a[end], &a[maxi]);begin++;end--;}
}

所以我们添加一步判断,如果maxi与begin是重合的情况下,在mini与begin交换后重新把指向最大值的mini赋值给maxi即可。

时间复杂度:

第一次是n个数中找2个数,后面是n-2,n-4.....1等差数列,所以时间复杂度为O(N^2)

下面我们来看一下选择与各个排序之间效率高低

在1万个数据中选择排序甚至比不上冒泡排序

那我们再试试有大量重复数据的情况

在重复数据多的情况下,选择还是优于冒泡的。

4b12323f94834afd9ec146a3c10df229.jpeg三.结语

本文的选择排序中也许直接选择排序并没有其他排序那么惊艳甚至会有时被冒泡压上一筹,但它还是有自己的闪光点的,其次是堆排序,在排序效率上与希尔差不多,个别情况也会比希尔高效,这是目前学习过程不容小觑的一类排序算法。因为本文只给了堆排的效率演示具体详解还请友友们移步我之前的文章重新认识一下堆排序~最后感谢大家的观看,友友们能够学习到新的知识是额滴荣幸,期待我们下次相见~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/242796.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pyro —— Creating Explosions

目录 Sourcing Adding debris to an explosion Adding sparks to an explosion Trails Trail Path Shapes Trail Source Types Understanding trails Incorporating trails into your explosion Sourcing Pyro Burst Source节点创建爆炸核心源&#xff0c;且对外观塑形…

Linux 系统之部署 h5ai 目录列表程序

一、h5ai 介绍 1.1&#xff09;h5ai 简介 h5ai 是用于 HTTP Web 服务器的现代文件索引器&#xff0c;专注于您的文件。目录以吸引人的方式显示&#xff0c;浏览它们通过不同的视图、面包屑和树概述得到增强。最初 h5ai 是 HTML5 Apache Index 的首字母缩写&#xff0c;但现在它…

midjourney充值订阅卡被拒绝了怎么办?

一、 AI绘图是什么&#xff1f; 就是AI绘画&#xff0c;顾名思义就是利用人工智能进行绘画&#xff0c;是人工智能生成内容&#xff08;AIGC&#xff09;的一个应用场景。其主要原理简单来说就是收集大量已有作品数据&#xff0c;通过算法对它们进行解析&#xff0c;最后再生成…

消息队列介绍

什么是 MQ MQ(message queue)&#xff0c;本质是个队列&#xff0c;FIFO 先入先出&#xff0c;只不过队列中存放的内容是 message 而已&#xff0c;还是一种跨进程的通信机制&#xff0c;用于上下游传递消息。在互联网架构中&#xff0c;MQ 是一种非常常 见的上下游“逻辑解耦…

131. 分割回文串 - 力扣(LeetCode)

问题描述 给你一个字符串 s&#xff0c;请你将 s 分割成一些子串&#xff0c;使每个子串都是 回文串 。返回 s 所有可能的分割方案。 回文串 是正着读和反着读都一样的字符串。 输入示例 s "aab"输出示例 [["a","a","b"],["…

Spring Boot 配置双数据源

Spring Boot 配置双数据源 目录概述需求&#xff1a; 设计思路实现思路分析1.基本步骤2.实例 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a better result,wait for cha…

SpringBoot 统计API接口用时该使用过滤器还是拦截器?

统计请求的处理时间&#xff08;用时&#xff09;既可以使用 Servlet 过滤器&#xff08;Filter&#xff09;&#xff0c;也可以使用 Spring 拦截器&#xff08;Interceptor&#xff09;。两者都可以在请求处理前后插入自定义逻辑&#xff0c;从而实现对请求响应时间的统计。 …

一个简单的ETCD GUI工具

使用ETCD没有好用的GUI工具&#xff0c;随手用c#写了一个&#xff0c; 做得好玩的一个ETCD GUI工具&#xff0c;后面加上CLI 工具&#xff0c;类似于 redis Cli工具一样&#xff0c;简化在 Linux下面的操作&#xff0c;不知道有没有必要&#xff0c; git 地址如下&#xff0c;…

【AI】小白入门笔记

前言 2024年&#xff0c;愿新年胜旧年&#xff01;作为AI世界的小白&#xff0c;今天先来从一些概念讲起&#xff0c;希望路过的朋友们多多指教&#xff01; 正文 AI (人工智能) 提起AI, 大家可能会想起各种机器人&#xff0c;移动手机的“Siri”,"小爱同学", 是语…

翻译: Anaconda 与 miniconda的区别

Anaconda 和 miniconda 是广泛用于数据科学的软件发行版&#xff0c;用于简化包管理和部署。 1. 主要有两个区别&#xff1a; packages包数量&#xff1a; Anaconda 附带了 150 多个数据科学包&#xff0c;而 miniconda 只有少数几个。Interface接口&#xff1a;Anaconda 有…

中仕教育:研究生毕业可以考选调生吗?

选调生的报考条件之一是应届生&#xff0c;研究生毕业也属于应届生&#xff0c;所以是可以报考的。 选调生不同学历的年龄限制&#xff1a; 1.应届本科生&#xff1a;年龄在25岁以内 2.应届研究生&#xff1a;年龄在30岁以内 3.应届博士生&#xff1a;年龄在35岁以内 研究…

Elasticsearch8 集群搭建(二)配置篇:(1)节点和集群配置

安装完Elasticsearch后&#xff0c;需要对其进行配置&#xff0c;包括以下几部分&#xff1a;节点和集群配置、系统配置、安全配置。 此篇记录节点和集群配置的内容&#xff0c;后续将更新系统配置和安全配置。 节点和集群配置&#xff1a; 通过编辑/usr/local/elasticsearc…

【Oracle】收集Oracle数据库内存相关的信息

文章目录 【Oracle】收集Oracle数据库内存相关的信息收集Oracle数据库内存命令例各命令的解释输出结果例参考 【声明】文章仅供学习交流&#xff0c;观点代表个人&#xff0c;与任何公司无关。 编辑|SQL和数据库技术(ID:SQLplusDB) 【Oracle】收集Oracle数据库内存相关的信息 …

力扣刷MySQL-第三弹(详细讲解)

&#x1f389;欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克&#x1f379; ✨博客主页&#xff1a;小小恶斯法克的博客 &#x1f388;该系列文章专栏&#xff1a;力扣刷题讲解-MySQL &#x1f379;文章作者技术和水平很有限&#xff0c;如果文中出…

Find My相机|苹果Find My技术与相机结合,智能防丢,全球定位

相机是一种利用光学成像原理形成影像并使用底片记录影像的设备&#xff0c;是用于摄影的光学器械。相机让我们能够记录下美丽的风景和珍贵的时刻。当我们到达一个迷人的地方,或者经历了一个特别难忘的时刻时,我们可以使用照相机来拍摄照片,记录下这些美好的回忆。照相机可以帮助…

[学习笔记]刘知远团队大模型技术与交叉应用L3-Transformer_and_PLMs

RNN存在信息瓶颈的问题。 注意力机制的核心就是在decoder的每一步&#xff0c;都把encoder的所有向量提供给decoder模型。 具体的例子 先获得encoder隐向量的一个注意力分数。 注意力机制的各种变体 一&#xff1a;直接点积 二&#xff1a;中间乘以一个矩阵 三&#xff1a;…

如何使用最新版Xmind打开mmap格式文件

下载MindManager又要钱&#xff0c;百度脑图又点不开脑图笔记中夹杂的文件和图片&#xff0c;下载一个Xmind来查看即可。 1.新建一个Xmind导图 2.导入已经下载好的mmap格式文件&#xff1a; 3. 自己选择那个文件即可&#xff1a; 4. 然后检查没问题&#xff0c;保存成xmind格式…

蓝桥杯、编程考级、NOC、全国青少年信息素养大赛—scratch列表考点

1、小小情报员&#xff08;202309scratch四级24题&#xff09; 1.准备工作 &#xff08;1&#xff09;选择背景 Colorful City&#xff1b; &#xff08;2&#xff09;保留角色小猫&#xff0c;选择角色Ballerina。 2.功能实现 &#xff08;1&#xff09;角色小猫初始位置…

【论文阅读】Relation-Aware Graph Transformer for SQL-to-Text Generation

Relation-Aware Graph Transformer for SQL-to-Text Generation Abstract SQL2Text 是一项将 SQL 查询映射到相应的自然语言问题的任务。之前的工作将 SQL 表示为稀疏图&#xff0c;并利用 graph-to-sequence 模型来生成问题&#xff0c;其中每个节点只能与 k 跳节点通信。由…

【SpringBoot】SpringBoot 项目初始化方法

github 搜索 springboot 模板 github 搜索 springboot 模板&#xff0c;拉取现成代码。 SpringBoot 官方的模板生成器 SpringBoot 官方的模板生成器&#xff08;https://start.spring.io/&#xff09; 在 IDEA 开发工具中生成 这里我修改成阿里的镜像主要是要使用 Java8。 …