【论文阅读】Relation-Aware Graph Transformer for SQL-to-Text Generation

Relation-Aware Graph Transformer for SQL-to-Text Generation

Abstract

SQL2Text 是一项将 SQL 查询映射到相应的自然语言问题的任务。之前的工作将 SQL 表示为稀疏图,并利用 graph-to-sequence 模型来生成问题,其中每个节点只能与 k 跳节点通信。由于无法捕获长期且缺乏特定于 SQL 的关系,这样的模型在适应更复杂的 SQL 查询时将会退化。为了解决这个问题,我们提出了一种 Relation-Aware Graph Transformer(RGT)来同时考虑 SQL 结构和各种关系。具体来说,为每个SQL构建一个抽象的SQL语法树来提供底层关系。我们还定制了自注意力和交叉注意力策略来编码 SQL 树中的关系。基准 WikiSQL 和 Spider 上的实验表明,我们的方法比强基准有所改进。

1. Introduction

SQL-to-Text:

  • SQL(结构化查询语言)是访问数据库的重要工具。然而,SQL对于普通人来说并不容易理解。
  • SQL2Text 旨在将结构化SQL程序转换为自然语言描述。
  • SQL2Text 可以帮助自动生成 SQL 注释,并构建一个交互式问答系统,用于关系数据库的自然语言接口。
  • SQL2Text 对于搜索 Internet 上可用的 SQL 程序很有用。
  • SQL2Text 可以通过使用 SQL-to-Text 作为数据增强来协助 Text-to-SQL 任务。
  • 在现实世界中,SQL2Text 可以帮助人们通过阅读相应的文本来快速理解复杂的SQL。

SQL 是结构化的,可以转换为抽象语法树,如图 1 所示。一般来说,树是一种特殊的图,因此 SQL-to-text 可以建模为 Graph-to-Sequence 任务。

  • xu 等人考虑了 SQL 查询的内在图结构。他们通过将 SQL 中的每个标记表示为图中的节点,并通过 SQL 关键字节点(例如 SELECT、AND)连接不同的单元(例如列名、运算符、值)来构建 SQL 图。
  • 通过图神经网络(GNN)聚合来自 K 跳邻居的信息,每个节点获得其上下文嵌入,该嵌入将在自然语言解码阶段访问。
  • 虽然简单有效,但它有两个主要缺点:
    • 由于构造的 SQL 图的稀疏性,泛化能力较差;
    • 忽略不同节点对之间的关系,特别是列节点之间的相关性。

在这里插入图片描述

特别是,Xu 等人仅处理简单的 SQL 模式 SELECT AGG COLUMN WHERE COLUMN OP VALUE (AND COLUMN OP VALUE)​。这些模式中只提到了一个列单元和一个表,所有约束都是通过 WHERE 子句中的条件交集来组织的。该模型通过 K 步迭代更新每个节点的上下文嵌入。每个节点在一次迭代中只会与其 1 跳邻居进行通信,因此每个节点在迭代结束时只能 “看到” K 距离内的节点。当我们转移到由多个表、GroupBy/HAVING/OrderBy/LIMIT 子句和嵌套 SQL 组成的更复杂的 SQL 模式时,性能很容易恶化。如图 1 所示的示例,K = 6 的 Graph2Seq 模型可能在简单 SQL(如左图所示)上运行良好,但在依赖距离较长的复杂 SQL(如右图所示)上泛化效果较差。

我们发现,即使两个节点在序列化 SQL 查询和解析的抽象语法树中相距较远,它们也可能具有较高的相关性。例如,同一子句(子句内)中提到的列紧密相关。参见下图中的示例。用户总是不仅需要特定候选人的姓氏,还需要名字。同样,在 WHERE 子句中充当条件之一的列也很有可能在 SELECT 子句(子句间)中被精确请求。以往的工作更多地关注SQL的语法结构,而忽略了语义层面上的这些潜在关系。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

为此,我们提出了一种 Relation-aware Graph Transformer(RGT)来考虑 sql 查询的抽象语法树和不同节点对之间的相关性。整个节点集分为两部分:中间节点和叶子节点。

  • 叶节点通常是原始表名或列字,加上一些一元修饰符,例如 DISTINCT 和 MAX。通常,这些叶节点传达查询中的重要语义信息。
  • SELECT 和 AND 等中间节点本质上捕获底层 SQL 查询的树结构,并将分散的叶节点连接起来。构建的 SQL 树的示例如图 2 所示。

在这里插入图片描述

我们在 SQL 树中引入了四种类型的关系,并提出了两种交叉注意力的变体来捕获结构信息。所有关系均由我们提出的 RGT 模型进行编码。

  • 由于SQL查询可能涉及多个表,因此我们首先考虑抽象概念TABLE和COLUMN之间的关系,称为数据库模式(DBS)。给定两个表示 TABLE 或 COLUMN 的节点,它们可能是同一个表中的两列,也可能是通过外键连接的两个表。我们定义了 11 种不同类型的 DBS 来描述这种关系。
  • 此外,节点的深度反映了信息量:更深的节点包含更多语义信息,而较浅的节点包含更多语法信息。我们引入定向相对深度(DRD)来捕获中间节点之间的相对深度。
  • 对于叶节点来说,最重要的关系是从属关系。例如,在图2中,叶子节点month和salary连接到COLUMN节点,而COLUMN和另一个叶子节点val0属于中间节点>。这三个叶节点是高度相关的。
  • 我们使用最低共同祖先(LCA)来衡量两个叶节点的紧密程度。我们可以看到,节点month和val0的LCA就是图2中的节点>。

此外,为了利用 SQL 的树结构,我们使用两种交叉注意力策略,即 attention over ancestors(AOA)和 attention over descendants(AOD)。AOA仅允许叶节点关注其祖先,AOD仅允许中间节点仅关注其后代。

我们使用各种基线模型对基准 WikiSQL 和 Spider 进行了广泛的实验。据我们所知,我们是第一个在涉及多个表和复杂条件的 SQL 模式上执行 SQL-to-Text 任务的人。结果表明,与其他替代方案相比,我们的模型具有良好的泛化能力。

主要贡献:

  • 我们提出了一种 relation-aware graph transformer来考虑 SQL 图中节点对之间的各种关系。
  • 我们是第一个在数据集Spider 上使用更复杂的SQL 模式执行SQL 到文本任务的人。
  • 大量实验表明,我们的模型优于各种Seq2Seq 和Graph2Seq 模型。

2. Model

2.1 SQL Tree Construction

构建的SQL树 V V V 的整个节点集被分为两类:中间节点 V I = { v i I } i = 1 ∣ V I ∣ V^I = \{v^I_i\}^{|V_I|}_{i=1} VI={viI}i=1VI 和叶节点 V L = { v i L } i = 1 ∣ V L ∣ V^L = \{v^L_i\}^{|V_L|}_{i=1} VL={viL}i=1VL

  • 中间节点包含三个抽象概念(SQL、TABLE 和 COLUMN)、七个 SQL 子句关键字(SELECT、WHERE 等)和二元运算符(>、<、= 等)
  • 叶节点包含一元运算符、原始表名称、列词以及实体值的占位符(诸如“new york”之类的实体,在预处理过程中被替换为一种特殊标记 v a l 0 val_0 val0,称为去词法化)。

通过这种分类方法,可以使用不同的关系信息来更新这两种类型的节点嵌入。

从根节点 SQL 开始:

  • 我们首先添加子句关键字作为其子节点。
    • SQL被分为一些子句,例如SELECT子句、WHERE子句、嵌套SQL子句等(见图3a)。
  • 然后概念抽象节点TABLE和COLUMN以及相关的操作符节点相应地附加到它们的父节点。
    • 每个子句由多个表、列和一些其他二元运算符组成。考虑到一些表名和列名有多个标记,我们设计了两个抽象节点(TABLE和COLUMN)来解决这个问题(见图3c)。通过这两个抽象节点,子句节点可以表示为如图 3b 所示。注意到二元运算符可以被视为多个节点之间的关系,我们将它们设置为中间节点(一些子节点的父节点)。
  • 接下来,对于节点 COLUMN 和 TABLE,我们将所有原始单词、aggregators 和不同 标记 附加为叶节点。

我们的 SQL 树由三个级别组成(参见图 3):子句级别、模式级别和标记级别。表 1 显示了所有类型的节点。

在这里插入图片描述
在这里插入图片描述

2.2 Encoder Overview

输入特征包括所有节点和关系的可训练嵌入。我们使用 X L ∈ R ∣ V L ∣ × d x X^L ∈ R^{|V_L|×d_x} XLRVL×dx R L = [ r i j L ] ∣ V L ∣ × ∣ V L ∣ R^L = [r^L_{ij}]_{|V^L|×|V^L|} RL=[rijL]VL×VL表示叶节点嵌入和叶节点之间的关系矩阵的集合。相应地, X I ∈ R ∣ V I ∣ × d x X^I ∈ R^{|V_I|×d_x} XIRVI×dx R I = [ r i j I ] ∣ V I ∣ × ∣ V I ∣ R^I = [r^I_{ij}]_{|V^I|×|V^I|} RI=[rijI]VI×VI 对应于中间节点。

编码器由 K 个堆叠块组成,如图 4 所示。主要组件是关系感知图 Transformer (RGT),它将节点嵌入矩阵 X X X、关系矩阵 R R R 和 从 R R R 中提取关系嵌入的关系函数 E E E 作为输入,并输出更新的节点矩阵。每个块包含四个模块:一个用于中间节点的 RGT,一个用于叶节点的 RGT,以及两个交叉注意力模块。在每个块中,节点嵌入 X I X^I XI X L X^L XL 通过自注意力和交叉注意力顺序更新。根据图 4 中的数据流,中间节点首先更新为:

在这里插入图片描述

然后,叶节点参与中间节点并使用 RGT 进行更新:

在这里插入图片描述

最后,中间节点也参与叶节点:

在这里插入图片描述

下标 in、mid、out 用于区分输入和输出。关系嵌入函数 E r e l I E^I_{rel} ErelI E r e l L E^L_{rel} ErelL、关系矩阵 R I R^I RI R L R^L RL以及模块 C r o s s A t t e n t i o n I ← L ( ⋅ , ⋅ ) CrossAttention^{I←L}(·,·) CrossAttentionIL(⋅,⋅) C r o s s A t t e n t i o n L ← I ( ⋅ , ⋅ ) CrossAttention^{L←I}(·,·) CrossAttentionLI(⋅,⋅) 的定义将在后面详细阐述。

在这里插入图片描述

2.3 Relation-Aware Graph Transformer

我们利用 Transformer 作为我们模型的骨干,它可以被视为图注意力网络的一个实例(GAT),其中每个节点的感受野是整个节点集。我们将 SQL 树视为一种特殊的图。假设输入图为 G = ( V , R ) , V = { v i } i = 1 ∣ V ∣ , R = [ r i j ] ∣ V ∣ × ∣ V ∣ G = (V, R), V = \{v_i\}^{|V|}_{ i=1},R = [r_{ij}]_{|V|×|V|} G=(V,R),V={vi}i=1VR=[rij]V×V,其中 V V V是顶点集, R R R是关系矩阵。每个节点 v i ∈ V v_i ∈ V viV 都有一个随机初始化的嵌入 x i ∈ R d x x_i ∈ R^{d_x} xiRdx 。之前的工作将节点 v i v_i vi v j v_j vj 之间的相对位置纳入相关性得分计算和上下文聚合步骤中。类似地,我们通过引入额外的关系向量来使这项技术适应我们的框架。从数学上讲,给定关系矩阵 R R R,我们构造一个关系嵌入函数 E r e l E_{rel} Erel 来检索关系 r i j r_{ij} rij 的特征向量 e i j = E r e l ( r i j ) ∈ R d x / H e_{ij} = E_{rel}(r_{ij}) ∈ R^{d_x/H} eij=Erel(rij)Rdx/H。然后,经过一层迭代后节点 v i v_i vi 的输出嵌入 y i y_i yi 计算如下:

在这里插入图片描述

除非另有说明,关系嵌入函数 E r e l E_{rel} Erel 在不同头和多层之间共享。为了方便讨论,我们将 RGT 编码模块的表示法简化为:

在这里插入图片描述

其中 X i n = [ x 1 ; ⋅ ⋅ ⋅ ; x ∣ V ∣ ] X_{in} = [x_1; · · · ; x_{|V|}] Xin=[x1;⋅⋅⋅;xV] 表示所有节点的输入嵌入矩阵。

2.4 Relations among Intermediate Nodes

对于中间节点,我们考虑两种类型的关系:数据库模式(DBS)和定向相对深度(DRD)。 DBS考虑抽象概念TABLE和COLUMN之间的关系。我们总共定义了 11 种关系。例如,如果节点 v i I v^I_i viI v j I v^I_j vjI 是 COLUMN 类型的节点,并且根据数据库模式它们属于同一个表,则关系 r i j D B S r^{DBS}_{ij} rijDBS 是 SAME-TABLE。表 2 显示了 DBS 关系的完整版本。从数学上来说,

在这里插入图片描述

其中关系嵌入函数 E r e l D B S E^{DBS}_{rel} ErelDBS 将关系类别 r i j D B S r^{DBS}_{ij} rijDBS 映射到可训练向量 e i j D B S e^{DBS}_{ij} eijDBS

在这里插入图片描述

借助底层有向 SQL 树,我们可以构建另一个关系矩阵来表示两个中间节点 v i I v^I_i viI v j I v^I_j vjI 之间的可达性和相对深度差异。设 d ( v i I ) d(v^I_i ) d(viI) 表示节点 v i I v^I_i viI 的深度,例如根 SQL 节点的深度为 1(见图 4)。给定最大深度差 D,

在这里插入图片描述

其中 E D R D E^{DRD} EDRD 是具有 2 D + 2 2D + 2 2D+2 个条目的关系嵌入模块。一项特殊条目代表不可访问性 inf。

3. Experiments

3.1 Dataset

WikiSQL 我们使用最新版本的 WikiSQL 进行实验。 WikiSQL 中的 SQL 仅包含长度较短的 SELECT 和 WHERE 子句。我们利用官方的训练/开发/测试拆分,确保每个表仅出现在单个拆分中。此设置要求模型在推理过程中泛化到看不见的表。

Spider 我们还使用 Spider,一个更复杂的数据集。与 WikiSQL 相比,Spider 中的 SQL 更长,数据量小得多。此外,Spider中还涉及到一些其他复杂的语法,例如JOIN、HAVING和嵌套SQL。

因此,Spider上的任务要困难得多。考虑到测试分割不公开,我们只使用训练分割和开发分割。

在这里插入图片描述

3.2 Experiment Setup

Metric 我们使用 BLEU-4 和 NIST 作为自动指标。每个 SQL 在 WikiSQL 中都有一个参考。在Spider中,大多数SQL都有双重引用,因为很多 SQLs 分别对应两种不同的自然语言表达。然而,该指标存在两个威胁:(1)结果可能会严重波动。 (2)BLUE-4无法全面评估生成文本的质量。为了减轻结果的波动,我们使用不同的随机种子运行所有实验 5 次。此外,我们对 Spider 进行了人类评估,以将我们的模型与最强的基线进行比较。

Data preprocessing 对于 WikiSQL,我们省略了 FROM 子句,因为所有 SQL 只与单个表相关。对于Spider,我们将表别名替换为其原始名称,并删除AS语法。此外,如前所述,问题被去词汇化了。

3.3 Main Results

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/242771.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【SpringBoot】SpringBoot 项目初始化方法

github 搜索 springboot 模板 github 搜索 springboot 模板&#xff0c;拉取现成代码。 SpringBoot 官方的模板生成器 SpringBoot 官方的模板生成器&#xff08;https://start.spring.io/&#xff09; 在 IDEA 开发工具中生成 这里我修改成阿里的镜像主要是要使用 Java8。 …

专业137总分439东南大学920专业基础综合考研经验电子信息与通信电路系统芯片

我本科是南京信息工程大学&#xff0c;今年报考东南大学信息学院&#xff0c;成功逆袭&#xff0c;专业137&#xff0c;政治69&#xff0c;英语86&#xff0c;数一147&#xff0c;总分439。以下总结了自己的复习心得和经验&#xff0c;希望对大家复习有一点帮助。啰嗦一句&…

ROS建模:一起从零手写URDF模型

1、机器人的定义与组成 2、URDF建模方法 link的描述部分&#xff1a; 其中geometry中参数origin的xyz单位为: m&#xff0c;其描述的是相对于坐标系的平移变换&#xff1b; rpy单位为&#xff1a;弧度&#xff0c;其描述的是相对于坐标系下的旋转偏移 collision是指碰撞属性…

深度探讨 Golang 中并发发送 HTTP 请求的最佳技术

目录 推荐 使用 Goroutines 的基本方法 Goroutine 入门 处理多个请求 并发 HTTP 请求的方法 基本 Goroutine WaitGroup Channels Worker Pools 使用通道限制 Goroutine 使用信号量限制 Goroutines 那么&#xff0c;最好的方法是什么&#xff1f; 评估你的需求 错误…

DevOps系列文章之 GitLab CI/CD

CICD是什么? 由于目前公司使用的gitlab&#xff0c;大部分项目使用的CICD是gitlab的CICD&#xff0c;少部分用的是jenkins&#xff0c;使用了gitlab-ci一段时间后感觉还不错&#xff0c;因此总结一下 介绍gitlab的CICD之前&#xff0c;可以先了解CICD是什么 我们的开发模式…

algotithm -- 排序算法

排序算法总结表&#xff1a; 1. In-place 和 Out-place 含义 参考链接 in-place 占用常数内存&#xff0c;不占用额外内存 假如问题规模是n&#xff0c;在解决问题过程中&#xff0c;只开辟了常数量的空间&#xff0c;与n无关&#xff0c;这是原址操作&#xff0c;就是In-…

安卓平板局域网内远程控制工控机方法

安卓平板局域网内远程控制工控机方法 将所需要远程控制的工控机通过网线连接到具有WiFi功能的路由器上&#xff0c;将安卓平板连接上WiFi&#xff0c;如下图所示 下载NoMachine远程软件安装包&#xff0c;官网地址&#xff1a;https://www.nomachine.com/ 点击Download now按钮…

Vulnhub靶机:FunBox 3

一、介绍 运行环境&#xff1a;Virtualbox 攻击机&#xff1a;kali&#xff08;10.0.2.15&#xff09; 靶机&#xff1a;FunBox 3&#xff08;10.0.2.28&#xff09; 目标&#xff1a;获取靶机root权限和flag 靶机下载地址&#xff1a;https://download.vulnhub.com/funbo…

2018年认证杯SPSSPRO杯数学建模C题(第一阶段)机械零件加工过程中的位置识别全过程文档及程序

2018年认证杯SPSSPRO杯数学建模 基于轮廓特征的机械零件位置识别研究 C题 机械零件加工过程中的位置识别 原题再现&#xff1a; 在工业制造自动生产线中&#xff0c;在装夹、包装等工序中需要根据图像处理利用计算机自动智能识别零件位置&#xff0c;并由机械手将零件自动搬…

【Elasticsearch】索引恢复(recovery)流程梳理之副本分片数据恢复

replica shard重启具体流程 replica shard node &#xff08;generic threadpool&#xff09; 也是因为应用新的集群状态触发recovery&#xff0c;进入index阶段进入translog 阶段。先尝试重放本地的translog到global checkpoint向primary shard发起start recovery的请求&…

第6章 现代通信技术

文章目录 6.1 图像与多媒体通信6.1.1 图像通信6.1.2 多媒体通信技术1、多媒体通信概念2、多媒体通信的组成3、多媒体通信的业务分类4、实用化的多媒体通信系统类型5、多媒体通信应用系统&#xff08;1&#xff09;多媒体会议电视系统&#xff08;2&#xff09;IPTV 6.2 移动通信…

uniapp uni.chooseLocation调用走失败那里,错误码:112

问题&#xff1a;我配置了百度上所有能配置的&#xff0c;一直调用不成功&#xff0c;如下图配置的 1:第一个 配置 代码&#xff1a; "permission": {"scope.userLocation": {"desc": "你的位置信息将用于小程序位置接口的效果展示"}…

Statistics with Python知识总结:库、统计图

前言 统计学作为一门重要的数据分析领域&#xff0c;为我们理解和解释数据提供了有力的工具。而Python是用来进行统计自动化和画图的重要工具。本文总结了与统计学相关的Python数据库和不同类型的统计图的关键知识点&#xff0c;帮助读者更好地理解工具&#xff0c;以及各知识…

RocketMQ学习总结

一、架构 1、NameServer&#xff1a;注册中心。Broker信息注册到NameServer&#xff1b;producer/consumer根据某个topic通过NameServer获取对应broker的路由信息 &#xff1b; 2、Broker&#xff1a;负责存储、拉取、转发消息&#xff1b; 3、Producer&#xff1a;消息生产者…

浅谈情绪的分类合集

一、什么是情绪分类 情绪分类&#xff0c;是指区分或者对比一种情绪与另一种情绪的方法&#xff0c;目前在情绪研究&#xff08;emotion research&#xff09;与情感科学&#xff08;affective science&#xff09;是具有争议的问题。有两个讨论情绪分类的基本观点&#xff1a…

ARP相关

ARP报文格式&#xff1a; 目的以太网地址&#xff0c;48bit&#xff0c;发送ARP请求时&#xff0c;目的以太网地址为广播MAC地址&#xff0c;即0xFF.FF.FF.FF.FF.FF。 源以太网地址&#xff0c;48bit。 帧类型&#xff0c;对于ARP请求或者应答&#xff0c;该字段的值都为0x08…

Traceroute 详解

前言 如果您是网络管理员&#xff0c;系统管理员或任何系统操作团队的一员&#xff0c;那么您可能已经听说过名为TRACEROUTE的工具。默认情况下&#xff0c;它是大多数操作系统中都提供的非常方便的工具。 网络管理员和系统管理员在日常活动中最常使用此工具。它基本上是一个…

pandas操作excel

目录 一&#xff1a;创建excel 二&#xff1a;修改excel 三&#xff1a;查找excel 四&#xff1a;删除数据 五&#xff1a;合并excel数据 一&#xff1a;创建excel import pandas as pd # 创建DataFrame对象 data { Name: [Alice, Bob, Charlie], Age: [25, 30, 35], S…

Microsoft Visual C++ RunTime怎么下载?

64位下载链接 下载好程序后双击&#xff0c;勾选“我同意许可条款和条件”&#xff0c;然后点击“安装” 安装完成后点击“关闭”即可 感谢您的阅读与关注&#xff0c;服务器大本营助您成为更专业的服务器管理员&#xff01;

32 登录页组件

效果演示 实现了一个登录页面的样式&#xff0c;包括一个容器、左侧和右侧部分。左侧部分是一个背景图片&#xff0c;右侧部分是一个表单&#xff0c;包括输入框、复选框、按钮和忘记密码链接。整个页面的背景色为白色&#xff0c;容器为一个圆角矩形&#xff0c;表单为一个半透…