深度学习基础之数据操作

深度学习中最常用的数据是张量,对张量进行操作是进行深度学习的基础。以下是对张量进行的一些操作:

首先我们需要先导入相关的张量库torch。

元素构造(初始化)

  • 使用arange创造一个行向量,也就是0轴(0维)。


    默认是按顺序创建,从0开始,元素类型默认是整数,当然也可以指定为浮点数。比如:
  • 可以使用张量shape属性来访问张量(沿每个轴的长度)的形状(shape)。

    当然指的是形状,也可能不只是一个维度。
  • 我们想知道张量中元素的总个数,也就是shape中所有元素的乘积,可以检查它的大小size。
  • 要想改变一个张量的形状,但是不改变张量的大小,可以使用reshape函数,这个函数是将张量进行维度转化。直接见例子:
    值得注意的是,这里的转化要求大小不变,比如我们的张量中一共有9个元素,那么我们只能转化为1*9,或者9*1,不能使之转化为2*4.5等。当然我们当然不是必须要计算出来每个维度的信息,如果我们需要转化为两个维度,而第一个维度已知是1,那么第二个维度可以直接用-1表示,另一个维度会自动被计算出来,我们可以省略一个维度。(最多省略一个维度)。维度的转化可以进行多维。
  • 有时候我们需要全0或者全1的张量,torch库中提供的有相应的函数。
  • 有时候我们需要通过某个概率分布中随机采样来获得元素的值,当我们构造数组来作为神经网络中的参数的时候,我们通常随机初始化参数的值。以下是一个使用正态分布来初始化数组的代码,这里我们使用的是均值为0,标准差为1的正态分布。

    随机化的结果会因为每次运行的不同而有所不同。

当然,最简单的构造方法就是直接构造张量。这里我们使用tensor来直接构造。

运算符

  • 运算中最常见的操作是加减乘除。
    在上述结果中,除法运算默认保留四位小数。
    幂运算我们在大学线性代数中没有接触,其实就是相应位置的幂运算。
  • 我们也可以把多个张量剪切到一起。连接(concatenate)对应的函数是cat。
    这里dim是维度的意思,0维即是行,1维即是列,同理递推。

    显然,维度不能超出范围。
  • 还能判断对应位置元素是否相等,直接使用==判断,结果可不是返回一个数值0或1,而是返回一个张量,该张量是对应每个位置比较的结果。
    相同的问题,对于判断两个张量是否相等的运算,首先要确保这两个张量的shape(形状)要统一。

将张量中所有元素求和,会得到一个新的元素(单张量),也可以认为是维度是1。

广播机制

广播机制就是通过适当复制元素来扩展一个或者两个数组,以便在转化之后两个数组具有相同的形状。但是大多数情况下,我们只会沿着维度为1 的轴进行广播。
在下图中,a的形状是2*2,没有维度是1的轴,无法进行广播,由于无法转化维度,导致不能与b相加。

接下来我们尝试用三阶张量替换广播机制中按元素操作的两个张量,看看是否符合预期。

答案是肯定的,但是我们首先要确保,每个维度上都必须有至少一个1。(用于进行广播)。

索引和切片

  • 用于读取元素:
    如图,-1表示最后一个元素,张量经过reshape处理后有三个元素,reshape可以这样理解(第一个参数表示元素个数,后面的所有参数组成一个元素)。
    第二个输出输出的是[1:3)的元素,左边参数是闭区间,右边参数是开区间。即选取 1和2。分别是第二个元素和第三个元素,元素的索引是从0开始的。

更改元素:

在这里,我们使第二行第三列的元素更改为0,最后一行最后一列的元素也更改为0。
当然,当我们进行有规律的大规模连续更改的时候,我们使用切片。

“:”表示默认,第一个参数表示是默认所有行,第二个参数表示是默认所有列。
这样,我们就指定2,3行,所有列进行更改。

节省内存

首先思考一个问题:x=x+y和x+=y是否相同:
在结果上时相同的,但是在内存分配上却不相同,第一个式子是为x重新分配一个内存来存储x张量,第二个式子是在原有x张量内存的基础上进行更改。我们可以用id函数来可视化:注意这里不能使用torch.ones(3,4)来创建。只能使用ones_like来创建,或者是zero_like来创建。

为什么说重新分配内存是不可取的:
首先,在机器学习中,我们可能有数百兆的参数,并且在一秒内多次更新参数,如果不原地执行这些更新的话,会占用大量的内存。
其次,如果不进行原地更新,其他的引用仍然会指向旧的内存地址,这样我们的代码可能无意间引用旧的参数。


当然也可以使用a[:]=<expression>来原地更新。比如:

有趣的是,这里可以使用torch.ones或者torch.zeros来创建张量,并且进行+=操作的时候不报错。

转化为其他类型的Python对象

将深度学习框架(pytorch)转化为Numpy张量对象(ndarray)很容易,反之也很容易。

当然,张量也可以转化为标量。(仅适用于大小为1的张量)

总结:

深度学习存储和操作数据的主要接口是张量(n维数组),它提供了各种功能,包括基本数学运算,广播,索引,切片,内存节省和转化为其他Python对象。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/243015.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Go面试向】实现map稳定的有序遍历的方式

问题 大家好 我是寸铁&#x1f44a; 总结了一篇实现map稳定的有序遍历的方式探讨的文章✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 你对 map 了解多少&#xff1f;如果要实现第一个稳定的有序遍历有哪些方式&#xff1f; 回答 你对 map 了解多少&#xff1f; 我对map有一定的…

HackTheBox - Medium - Linux - Backend

Backend 外部信息搜集 端口扫描 循例nmap Web枚举 feroxbuster 这个结构与这个靶机第二个版本基本一致 /user 创建个账号 登录 burp添加请求头 /docs 看到有个可以修改密码的api&#xff0c;先查询admin的guid 尝试修改admin的密码 登录admin Foothold exec需要debug&#x…

数据结构中的一棵树

一、树是什么&#xff1f; 有根有枝叶便是树&#xff01;根只有一个&#xff0c;枝叶可以有&#xff0c;也可以没有&#xff0c;可以有一个&#xff0c;也可以有很多。 就像这样&#xff1a; 嗯&#xff0c;应该是这样&#xff1a; 二、一些概念 1、高度 树有多高&#x…

关于 open ai,你了解多少?

OpenAI 的历史 第一阶段&#xff1a;2015-2018 年 2015 年&#xff0c;埃隆马斯克、山姆阿尔特曼、彼得蒂尔和杰西卡利文斯顿联合创立了 OpenAI。OpenAI 的目标是开发安全、有益的 AGI&#xff0c;并确保其造福全人类。在这一阶段&#xff0c;OpenAI 主要专注于基础研究&…

PyQt5 快速入门(一)

第一节按钮控件,文本控件,输入框,app图标 文章目录 一.GUI按钮控件 二.文本控件 三.输入框 四.让窗口显示在屏幕中央 五.让窗口显示在屏幕中央 总结 一.GUI按钮控件 import sys from PyQt5.QtWidgets import QApplication, QWidget, QPushButtonif __name__ __main__:app …

网络逻辑示意图工具

现代网络容纳了来自不同供应商的大量设备&#xff0c;支持一系列新技术&#xff0c;并跨越了分布在多个位置的边界&#xff0c;随着网络变得越来越复杂&#xff0c;网络管理员发现越来越难以跟踪网络领域的所有当代进步和发展&#xff0c;这使得网络管理比以往任何时候都更具挑…

CGLIB动态代理(AOP原理)(面试重点)

推荐先看JDK 动态代理&#xff08;Spring AOP 的原理&#xff09;&#xff08;面试重点&#xff09; JDK 动态代理与 CGLIB 动态代理的区别 JDK 动态代理有⼀个最致命的问题是其只能代理实现了接⼝的类. 有些场景下,我们的业务代码是直接实现的,并没有接⼝定义.为了解决这个问…

Docker安装启动、常用命令、应用部署、迁移备份、Dockerfile、Docker私有仓库

目录 1.Docker安装与启动 1.1 安装Docker 1.2 设置ustc的镜像 1.3 Docker的启动与停止 2.常用命令 2.1 镜像相关命令 2.1.1 查看镜像 2.1.2 搜索镜像 2.1.3 拉取镜像 2.1.4 删除镜像 2.2 容器相关命令 2.2.1 查看容器 2.2.2 创建与启动容器 2.2.3 停止与启动容器 2.…

Maven 简介

本文 Maven3.8.8 版本&#xff0c;搭配JDK17和IDEA2022版本&#xff0c; 依赖导入 项目构建 依赖分享 自动部署 1、为什么学习Maven 1.1、Maven是一个依赖管理工具 ① jar 包的规模 随着我们使用越来越多的框架&#xff0c;或者框架封装程度越来越高&#xff0c;项…

Hypervisor 和Docker 还有Qemu有什么区别与联系?

Hypervisor Hypervisor是一种运行在基础物理服务器和操作系统之间的中间软件层&#xff0c;可以让多个操作系统和应用共享硬件资源&#xff0c;也叫做虚拟机监视器&#xff08;VMM&#xff09;。 Hypervisor有两种类型&#xff1a;Type I和Type II。 Type I 直接运行在硬件上&a…

three.js 缓动算法.easing(渐入相机动画)

效果&#xff1a;淡入&#xff0c;靠近物体 代码&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red"></div><div c…

HBuilder X中uView UI框架的安装及使用

开发工具: HBuilder X 在最上方的工具中点击 插件安装 ——> 安装新插件 ——> 前往插件市场安装 在作者排行榜中找到 uView UI 选择该版本 然后点击下载并导入HBuilder X 然后选择你想导入的项目 在项目根目录中的main.js中&#xff0c;引入并使用uView的JS库&#xff…

CTFhub-bak文件

CTFhub-Web-信息泄露-备份文件下载-bak文件 题目信息 解题过程 看到提示说和index.php有关&#xff0c;在url后面加index.php.bak&#xff0c;跳转到http://challenge-7a4da2076cfabae6.sandbox.ctfhub.com:10800/index.php.bak网址&#xff0c;即&#xff1a; 跳转到下载页…

菜鸟关于做前、后端的整理(html、js),以及疑问

涉及到后端的接口py&#xff0c;前端html和js 这三部分就按照如下格式放到server项目主路径下&#xff0c;这样后端机可以作为一个前端server main.pystaticmain.jsmain.htmlhtml 首先是html要设定网页的显示 <!DOCTYPE html> <html> <head><title>…

循环神经网络的变体模型-LSTM、GRU

一.LSTM&#xff08;长短时记忆网络&#xff09; 1.1基本介绍 长短时记忆网络&#xff08;Long Short-Term Memory&#xff0c;LSTM&#xff09;是一种深度学习模型&#xff0c;属于循环神经网络&#xff08;Recurrent Neural Network&#xff0c;RNN&#xff09;的一种变体。…

Wincoot消除拉式图里outlier的多种策略

在蛋白质中,氨基酸残基之间由肽键相连。 由于肽键的平面性,每个残基的构象都可以用两个扭转角来描述。而空间位阻的关系又导致这两个扭转角只能取有限的值,并用拉式图(Ramachandran plot)来表述它们的允许区域。 拉式图可被用来描述蛋白质结构模型的总体质量。 对于确定…

万物简单AIoT 端云一体实战案例学习 之 快速开始

学物联网,来万物简单IoT物联网!! 下图是本案的3步导学,每个步骤中实现的功能请参考图中的说明。 1、简介 物联网具有场景多且复杂、链路长且开发门槛高等特点,让很多想学习或正在学习物联网的学生或开发者有点不知所措,甚至直接就放弃了。    万物简单AIoT物联网教育…

(2)(2.1) Andruav Android Cellular(一)

文章目录 前言 1 Andruav 是什么&#xff1f; 2 Andruav入门 3 Andruav FPV 4 Andruav GCS App​​​​​​​ 前言 Andruav 是一个基于安卓的互联系统&#xff0c;它将安卓手机作为公司计算机&#xff0c;为你的无人机和遥控车增添先进功能。 1 Andruav 是什么&#xff…

接口自动化测试框架设计

文章目录 接口测试的定义接口测试的意义接口测试的测试用例设计接口测试的测试用例设计方法postman主要功能请求体分类JSON数据类型postman内置参数postman变量全局变量环境变量 postman断言JSON提取器正则表达式提取器Cookie提取器postman加密接口签名 接口自动化测试基础getp…

【5G 接口协议】N2接口协议NGAP(NG Application Protocol)介绍

博主未授权任何人或组织机构转载博主任何原创文章&#xff0c;感谢各位对原创的支持&#xff01; 博主链接 本人就职于国际知名终端厂商&#xff0c;负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作&#xff0c;目前牵头6G算力网络技术标准研究。 博客…