Tensorflow2.0笔记 - tensor的合并和分割

        主要记录concat,stack,unstack和split相关操作的作用

import tensorflow as tf
import numpy as nptf.__version__#concat对某个维度进行连接
#假设下面的tensor0和tensor1分别表示4个班级35名同学的8门成绩和两个班级35个同学8门成绩
tensor0 = tf.ones([4,35,8])
tensor1 = tf.ones([2,35,8])
#用concat将第0个维度(班级,axis=0)连接起来,结果是一个[6,35,8]的tensor
#表示6个班级35名同学8门成绩的数据
tensor = tf.concat([tensor0, tensor1], axis=0)
print("=========>tf.concat([tensor0, tensor1], axis=0).shape:", tensor.shape)#在同学维度进行合并,第1个维度,axis=1
#假设下面的tensor0和tensor1分别表示4个班级32名同学的8门成绩和4个班级3个同学8门成绩
tensor0 = tf.ones([4,32,8])
tensor1 = tf.ones([4,3,8])
#concat合并第一个维度,可以理解为,tensor0先收集到了32名同学的8门成绩
#然后补考的3名同学成绩放到了tensor1上,通过concat进行汇总
tensor = tf.concat([tensor0, tensor1], axis=1)
print("=========>tf.concat([tensor0, tensor1], axis=1).shape:", tensor.shape)#concat对于维度有要求,对于不是指定axis的维度要相等才能concat
#一个[4,35,8]的tensor和一个[3,15,8]的tensor无法进行concat#concat对某个维度进行连接
#假设下面的tensor0和tensor1分别表示4个班级35名同学的8门成绩和两个班级35个同学8门成绩
tensor0 = tf.ones([4,35,8])
tensor1 = tf.ones([2,35,8])
#用concat将第0个维度(班级,axis=0)连接起来,结果是一个[6,35,8]的tensor
#表示6个班级35名同学8门成绩的数据
tensor = tf.concat([tensor0, tensor1], axis=0)
print("=========>tf.concat([tensor0, tensor1], axis=0).shape:", tensor.shape)#在同学维度进行合并,第1个维度,axis=1
#假设下面的tensor0和tensor1分别表示4个班级32名同学的8门成绩和4个班级3个同学8门成绩
tensor0 = tf.ones([4,32,8])
tensor1 = tf.ones([4,3,8])
#concat合并第一个维度,可以理解为,tensor0先收集到了32名同学的8门成绩
#然后补考的3名同学成绩放到了tensor1上,通过concat进行汇总
tensor = tf.concat([tensor0, tensor1], axis=1)
print("=========>tf.concat([tensor0, tensor1], axis=1).shape:", tensor.shape)#concat对于维度有要求,对于不是指定axis的维度要相等才能concat
#一个[4,35,8]的tensor和一个[3,15,8]的tensor无法进行concat#unstack和stack操作相反,会对指定维度进行拆分
tensor = tf.ones([3,4,35,8])#拆分出3个[4,35,8]的tensor
splited = tf.unstack(tensor, axis=0)
print("==========>tf.unstack(tensor, axis=0).shape:", splited[0].shape, splited[1].shape, splited[2].shape)#拆分出8个[3,4,35]的tensor
splited = tf.unstack(tensor, axis=3)
print("==========>tf.unstack(tensor, axis=3).shape:", splited[0].shape, splited[1].shape, splited[2].shape,splited[3].shape, splited[4].shape, splited[5].shape,splited[5].shape, splited[6].shape, splited[7].shape)#拆分出4个[3,35,8]的tensor
splited = tf.unstack(tensor, axis=1)
print("==========>tf.unstack(tensor, axis=1).shape:", splited[0].shape, splited[1].shape, splited[2].shape, splited[3].shape)#unstack会固定打散指定维度为1
#split则可以指定这个维度划分的比例,通过num_or_size_splits指定
#看个例子就明白了
tensor = tf.ones([2,4,35,8])
#第3个维度划分为2个4维的两个tensor([2,4,35,4]) --- 8 / 2(num_of_size_splits) = 4
splited = tf.split(tensor, axis=3, num_or_size_splits=2)
print("==========>split(tensor, axis=3, num_or_size_splits=2).shape:", splited[0].shape, splited[1].shape)#将第3个维度按照2,2,4的比例划分,得到3个tensor
splited = tf.split(tensor, axis=3, num_or_size_splits=[2,2,4])
print("==========>split(tensor, axis=3, num_or_size_splits=2).shape:", splited[0].shape, splited[1].shape, splited[2].shape)

        运行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/243613.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

centos安装:node.js、npm及pm2

前言 Node.js发布于2009年5月,由Ryan Dahl开发,是一个基于Chrome V8引擎的JavaScript运行环境,使用了一个事件驱动、非阻塞式I/O模型,让JavaScript 运行在服务端的开发平台,它让JavaScript成为与PHP、Python、Perl、Ru…

20.云原生之GitLab CICD实战

云原生专栏大纲 文章目录 GitLab RunnerGitLab Runner 介绍Gitlab Runner工作流程 Gitlab集成Gitlab RunnerGitLab Runner 版本选择Gitlab Runner部署docker-compose方式安装kubesphere中可视化方式安装helm方式安装 配置gitlab-runner配置gitlab-ci.ymlgitlab-ci.yml 介绍编写…

SpringCloud Alibaba 深入源码 - Nacos 分级存储模型、支撑百万服务注册压力、解决并发读写问题(CopyOnWrite)

目录 一、SpringCloudAlibaba 源码分析 1.1、SpringCloud & SpringCloudAlibaba 常用组件 1.2、Nacos的服务注册表结构是怎样的? 1.2.1、Nacos的分级存储模型(理论层) 1.2.2、Nacos 源码启动(准备工作) 1.2.…

Linux编辑器---vim

目录 1、vim的基本概念 2正常/普通/命令模式(Normal mode) 2、1命令模式下一些命令(不用进入插入模式) 3插入模式(Insert mode) 4末行/底行模式(last line mode) 4、1底行模式下的一些命令 5、普通用户无法进行sudo提权的解决方案 6、vim配置问题 6、1配…

超优秀的三维模型轻量化、格式转换、可视化部署平台!

1、基于 HTML5 和 WebGL 技术,可在主流浏览器上进行快速浏览和调试,支持PC端和移动端 2、自主研发 AMRT 展示框架和9大核心技术,支持3D模型全网多端流畅展示与交互 3、提供格式转换、减面展UV、烘焙等多项单模型和倾斜摄影模型轻量化服务 4、…

uniapp 链接跳转(内部跳转和外部跳转)

使用uniapp的超链接跳转在微信小程序中会出现复制链接在外面在跳转如图 这样的客户体验感不好 我们需要可以直接跳转查看 思路:webview 1.先在自己uniapp项目pages.json建一个内部页面webview.vue 在page.json里面指向我们跳转的这个内部路径(这个创建页面会自动…

Unity中URP下的SimpleLit的 BlinnPhong高光反射计算

文章目录 前言一、回顾Blinn-Phong光照模型1、Blinn-Phong模型: 二、URP下的SimpleLit的 BlinnPhong1、输入参数2、程序体计算 前言 在上篇文章中,我们分析了 URP下的SimpleLit的 Lambert漫反射计算。 Unity中URP下的SimpleLit的 Lambert漫反射计算 我…

别再因为React、Vue吵了,真的毫无新意!

最近尤大的一个推文引起了不小热议,大概经过是: 有人在推上夸React文档写的好,把可能的坑点都列出来尤看到后批评道:框架应该自己处理这些坑点,而不是把他们暴露给用户 尤大在推上的发言一直比较耿直,这次…

2024-01-22(MongoDB)

1.Mongodb使用的业务场景: 传统的关系型数据库/mysql在“三高”需求以及应对web2.0的网站需求面前,有点力不从心,什么是“三高”需求: a. 对数据库高并发的读写需求 b. 对海量数据的高效率存储和访问需求 c. 对数据库的高可扩…

Redis应用(1)缓存(1.2)------Redis三种缓存问题

一、 缓存穿透: 1、定义: 缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。所谓穿透,就是直接透过了redis,直接透到数据库 2、原因:…

Spring Boot3整合Druid(监控功能)

目录 1.前置条件 2.导依赖 错误依赖: 正确依赖: 3.配置 1.前置条件 已经初始化好一个spring boot项目且版本为3X,项目可正常启动。 作者版本为3.2.2最新版 2.导依赖 错误依赖: 这个依赖对于spring boot 3的支持不够&#…

【学习】FPN特征金字塔

论文:Feature Pyramid Networks for Object Detection (CVPR 2016) 参考blog:https://blog.csdn.net/weixin_55073640/article/details/122627966 参考视频讲解:添加链接描述 卷积网络中,深层网络容易响应语义特征&am…

芯驰E3340软件编译以及更新步骤

打开已有工程File->Open Solution: 东南项目:e3340\boards\e3_324_ref_display\proj\jetour-t1n-fl3\sf\SES 编译:build->build sf 增加头文件和宏定义: 编译完成sf后,进行编译bootloader 东南项目:e3340\boa…

k8s-kubectl常用命令

一、基础命令 1.1 get 查询集群所有资源的详细信息,resource包括集群节点、运行的Pod、Deployment、Service等。 1.1.1 查询Pod kubectl get po -o wid 1.1.2 查询所有NameSpace kubectl get namespace 1.1.3 查询NameSpace下Pod kubectl get po --all-namespaces…

机器人学论文——智能施药机器人调研报告

目录 摘 要 Abstract 第一章:引言 1.1研究背景 1.2 研究意义 1.3文章架构 第二章:智能施药机器人发展现状 2.1引言 2.2 大田智能施药机器人发展现状 2.3 果园智能施药机器人发展现状 2.4 设施农业智能施药机器人发展现状 第三章:智能施药机器…

【Spring Boot 3】【Redis】基本数据类型操作

【Spring Boot 3】【Redis】基本数据类型操作 背景介绍开发环境开发步骤及源码工程目录结构 背景 软件开发是一门实践性科学,对大多数人来说,学习一种新技术不是一开始就去深究其原理,而是先从做出一个可工作的DEMO入手。但在我个人学习和工…

http网络编程——在ue5中实现文件传输功能

http网络编程在ue5中实现 需求:在unreal中实现下载功能,输入相关url网址,本地文件夹存入相应文件。 一、代码示例 1.Build.cs需要新增Http模块,样例如下。 PublicDependencyModuleNames.AddRange(new string[] { "Core&q…

【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于Real-ESRGAN的TPU超分模型部署

2023 CCF 大数据与计算智能大赛 《基于TPU平台实现超分辨率重建模型部署》 洋洋很棒 李鹏飞 算法工程师 中国-烟台 2155477673qq.com 团队简介 本人从事工业、互联网场景传统图像算法及深度学习算法开发、部署工作。其中端侧算法开发及部署工作5年时间。 摘要 本文是…

基于java+Springboot操作系统教学交流平台详细设计实现

基于javaSpringboot操作系统教学交流平台详细设计实现 🍅 作者主页 央顺技术团队 🍅 欢迎点赞 👍 收藏 ⭐留言 📝 🍅 文末获取源码联系方式 📝 🍅 查看下方微信号获取联系方式 承接各种定制系统…

C++ 知识列表【图】

举例C的设计模式和智能指针 当谈到 C 的设计模式时,以下是一些常见的设计模式: 工厂模式(Factory Pattern):用于创建对象的模式,隐藏了对象的具体实现细节,只暴露一个公共接口来创建对象。 单例…