回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测

回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测

目录

    • 回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测
      • 预测效果
      • 基本描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测(完整源码和数据)
2.OOA选择最佳的SVM核函数参数c和g;
3.多特征输入单输出的回归预测。程序内注释详细,excel数据,直接替换数据就可以用。
4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式资源出下载Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测。
%%  参数设置
%%  优化算法
[Best_score,Best_pos, curve] = OOA(pop, Max_iteration, lb, ub, dim, fun); %%  获取最优参数
bestc = Best_pos(1, 1);  
bestg = Best_pos(1, 2); %%  建立模型
cmd = [' -t 2 ', ' -c ', num2str(bestc), ' -g ', num2str(bestg), ' -s 3 -p 0.01 '];
model = svmtrain(t_train, p_train, cmd);%%  仿真预测
[t_sim1, error_1] = svmpredict(t_train, p_train, model);
[t_sim2, error_2] = svmpredict(t_test , p_test , model);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1 =T_sim1';
T_sim2 =T_sim2';
%%  适应度曲线
figure;
plot(1 : length(curve), curve, 'LineWidth', 1.5);
title('适应度曲线', 'FontSize', 13);
xlabel('迭代次数', 'FontSize', 13);
ylabel('适应度值', 'FontSize', 13);
grid
set(gcf,'color','w')%%  相关指标计算
%%  均方根误差
toc
%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
set(gcf,'color','w')
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
set(gcf,'color','w')
%%  均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/244203.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IS-IS:01 ISIS基本配置

这是实验拓扑,下面是基本配置: R1: sys sysname R1 user-interface console 0 idle-timeout 0 0 int loop 0 ip add 1.1.1.1 24 int g0/0/0 ip add 192.168.12.1 24 qR2: sys sysname R2 user-interface console 0 idle-timeout 0 0 int loop 0 ip add …

05.Elasticsearch应用(五)

Elasticsearch应用(五) 1.目标 咱们这一章主要学习Mapping(映射) 2.介绍 Mapping是对索引库中文档的约束,类似于数据表结构,作用如下: 定义索引中的字段的名称定义字段的数据类型&#xff…

HarmonyOS鸿蒙学习基础篇 - 基本语法概述

书接上文 HarmonyOS鸿蒙学习基础篇 - 运行第一个程序 Hello World 基本语法概述 打开 entry>src>main>ets>pages>index.ets 代码如下代码详细解释如下: Entry //Entry装饰的自定义组件将作为UI页面的入口。在单个UI页面中,最多可以使用…

<蓝桥杯软件赛>零基础备赛20周--第16周--GCD和LCM

报名明年4月蓝桥杯软件赛的同学们,如果你是大一零基础,目前懵懂中,不知该怎么办,可以看看本博客系列:备赛20周合集 20周的完整安排请点击:20周计划 每周发1个博客,共20周。 在QQ群上交流答疑&am…

OpenCV第 1 课 计算机视觉和 OpenCV 介绍

文章目录 第 1 课 计算机视觉和 OpenCV 介绍1.机器是如何“看”的2.机器视觉技术的常见应用3.图像识别介绍4. 图像识别技术的常见应用5.OpenCV 介绍6.图像在计算机中的存储形式 第 1 课 计算机视觉和 OpenCV 介绍 1.机器是如何“看”的 我们人类可以通过眼睛看到五颜六色的世界…

MySQL InnoDB 底层数据存储

InnoDB 页记录Page Directory记录迁移 页 是内存与磁盘交互的基本单位,16kb。 比如,查询的时候,并不是只从磁盘读取某条记录,而是记录所在的页 记录 记录的物理插入是随机的,就是在磁盘上的位置是无序的。但是在页中…

一文讲透Redis的LRU与LFU算法实现

深入解析Redis的LRU与LFU算法实现 一、前言 Redis是一款基于内存的高性能NoSQL数据库,数据都缓存在内存里, 这使得Redis可以每秒轻松地处理数万的读写请求。 相对于磁盘的容量,内存的空间一般都是有限的,为了避免Redis耗尽宿主…

【Linux工具篇】编辑器vim

目录 vim的基本操作 进入vim(正常模式) 正常模式->插入模式 插入模式->正常模式 正常模式->底行模式 底行模式->正常模式 底行模式->退出vim vim正常模式命令集 vim插入模式命令集 vim末行模式命令集 vim操作总结 vim配置 Linux编译器…

小米浏览器打开H5页面表格无法滑动,如何解决?

问题: 小米浏览器打开H5页面表格无法滑动,出现此问题时,第一时间怀疑是代码的css样式适配问题,也做了很多样式适配的尝试,最后测试均没有解决无法滑动的问题。 转变思维: 脑海中突然闪现是否可以使用其他…

【Python进阶编程】python编程高手常用的设计模式(持续更新中)

Python编程高手通常熟练运用各种设计模式,这些设计模式有助于提高代码的可维护性、可扩展性和重用性。 以下是一些Python编程高手常用的设计模式: 1.单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供全局…

[晓理紫]每日论文分享(有中文摘要,源码或项目地址)-大模型、扩散模型、视觉导航

专属领域论文订阅 关注{晓理紫|小李子},每日更新论文,如感兴趣,请转发给有需要的同学,谢谢支持 如果你感觉对你有所帮助,请关注我,每日准时为你推送最新论文。 分类: 大语言模型LLM视觉模型VLM扩散模型视觉…

机器学习预测全家桶之单变量输入多步预测,天气温度预测为例,MATLAB代码

截止到本期,一共发了8篇关于机器学习预测全家桶的文章。参考文章如下: 1.五花八门的机器学习预测?一篇搞定不行吗? 2.机器学习预测全家桶,多步预测之BiGRU、BiLSTM、GRU、LSTM,LSSVM、TCN、CNN,…

性能优化(CPU优化技术)-NEON指令介绍

「发表于知乎专栏《移动端算法优化》」 本文主要介绍了 NEON 指令相关的知识,首先通过讲解 arm 指令集的分类,NEON寄存器的类型,树立基本概念。然后进一步梳理了 NEON 汇编以及 intrinsics 指令的格式。最后结合指令的分类,使用例…

前端实现贪吃蛇功能

大家都玩过贪吃蛇小游戏,控制一条蛇去吃食物,然后蛇在吃到食物后会变大。本篇博客将会实现贪吃蛇小游戏的功能。 1.实现效果 2.整体布局 /*** 游戏区域样式*/ const gameBoardStyle {gridTemplateColumns: repeat(${width}, 1fr),gridTemplateRows: re…

【强化学习】QAC、A2C、A3C学习笔记

强化学习算法:QAC vs A2C vs A3C 引言 经典的REINFORCE算法为我们提供了一种直接优化策略的方式,它通过梯度上升方法来寻找最优策略。然而,REINFORCE算法也有其局限性,采样效率低、高方差、收敛性差、难以处理高维离散空间。 为…

面试题: Nginx 的优化思路有哪些?网站的防盗链如何做?

文章目录 拓扑图推荐步骤在Centos01上安装Nginx,设置网站根目录/www使用域名www.h.com访问配置Nginx配置DNS 验证Nginx日志切割在www.h.com网站配置防盗链防止www.hy.com盗www.h.com的连接 注:本文提到的网址仅不是实际存在的网站,仅作为技术…

写Shell以交互方式变更Ubuntu的主机名

以下是一个简单的 Bash 脚本,用于以交互方式更改 Ubuntu 20 系统的主机名: 1#!/bin/bash 2 3# 提示用户输入新的主机名 4read -p "请输入新的系统名称(主机名): " new_hostname 5 6# 检查是否输入了新的主机名 7if [ -…

Qt解析含颜色的QString字符串显示到控件

1、需求 开发接收含颜色字符串显示到窗口,可解析字符串颜色配置窗口属性,且分割字符串显示。 mprintf(“xxxxxx”);打印的xxxxxx含有颜色配置。 2、实现方法 2.1、条件 选用Qt的PlainTextEdit控件显示字符串,配置为只读模式 …

31、WEB攻防——通用漏洞文件上传JS验证mimeuser.ini语言特性

文章目录 文件上传一、前端验证二、.user.ini 文件上传 检测层面:前端、后端等检测内容:文件头、完整性、二次渲染等检测后缀:黑名单、白名单、MIME检测等绕过技巧:多后缀解析(php5、php7)、截断、中间件特…

检查字符串数组中的每个字符串是否全为“不显示元素”(如空格、制表符、换行符等)numpy.char.isspace()

【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 检查字符串数组中的每个字符串 是否全为“不显示元素” (如空格、制表符、换行符等) numpy.char.isspace() [太阳]选择题 请问以下代码最终输出结果是? i…