【算法专题】动态规划之路径问题

动态规划2.0

  • 动态规划 - - - 路径问题
    • 1. 不同路径
    • 2. 不同路径Ⅱ
    • 3. 珠宝的最高价值
    • 4. 下降路径最小和
    • 5. 最小路径和
    • 6. 地下城游戏

动态规划 - - - 路径问题

1. 不同路径

题目链接 -> Leetcode -62.不同路径

Leetcode -62.不同路径

题目:一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?

示例 1:
输入:m = 3, n = 7
输出:28

示例 2:
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右->向下->向下
  2. 向下->向下->向右
  3. 向下->向右->向下

示例 3:
输入:m = 7, n = 3
输出:28

示例 4:
输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 10^9

思路:

  1. 状态表示:对于这种「路径类」的问题,我们的状态表示一般有两种形式:
    i. 从 [i, j] 位置出发,…;
    ii. 从起始位置出发,到达 [i, j] 位置,…;
    我们选择第二种定义状态表示的方式:dp[i][j] 表示:走到 [i, j] 位置处,一共有多少种方式。
  2. 状态转移方程:分析一下,如果 dp[i][j] 表示到达 [i, j] 位置的方法数,那么到达 [i, j] 位置之前的一小步,有两种情况:
    i. 从 [i, j] 位置的上方( [i - 1, j] 的位置)向下走一步,转移到 [i, j] 位置;
    ii. 从 [i, j] 位置的左方( [i, j - 1] 的位置)向右走一步,转移到 [i, j] 位置。
    由于我们要求的是有多少种方法,因此状态转移方程就呼之欲出了: dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 。
  3. 返回值:根据状态表示,我们要返回 dp[m][n] 的值。

代码如下:

		class Solution {public:int uniquePaths(int m, int n){// 多开一行一列,可以直接在循环内初始化vector<vector<int>> dp(m + 1, vector<int>(n + 1));dp[0][1] = 1;  // 为了后面填表的正确// dp[i][j] 表示:⾛到 [i, j] 位置处,⼀共有多少种方式for (int i = 1; i <= m; i++){for (int j = 1; j <= n; j++){dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m][n];}};

2. 不同路径Ⅱ

题目链接 -> Leetcode -63.不同路径Ⅱ

Leetcode -63.不同路径Ⅱ

题目:一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:
输入:obstacleGrid = [[0, 0, 0], [0, 1, 0], [0, 0, 0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:

  1. 向右->向右->向下->向下
  2. 向下->向下->向右->向右

示例 2:
输入:obstacleGrid = [[0, 1], [0, 0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

思路:本题为不同路径的变型,只不过有些地方有「障碍物」,只要在「状态转移」上稍加修改就可解决。

  1. 状态表示:dp[i][j] 表示:走到 [i, j] 位置处,一共有多少种方式。
  2. 状态转移:简单分析一下。如果 dp[i][j] 表示到达 [i, j] 位置的方法数,那么到达 [i, j] 位置之前的一小步,有两种情况:
    i. 从 [i, j] 位置的上方( [i - 1, j] 的位置)向下走一步,转移到 [i, j] 位置;
    ii. 从 [i, j] 位置的左方( [i, j - 1] 的位置)向右走一步,转移到 [i, j] 位置。
    但是, [i - 1, j] 与 [i, j - 1] 位置都是可能有障碍的,此时从上面或者左边是不可能到达 [i, j] 位置的,也就是说,此时的方法数应该是 0;由此我们可以得出一个结论,只要这个位置上「有障碍物」,那么我们就不需要计算这个位置上的值,直接让它等于 0 即可。
  3. 返回值:根据状态表示,我们要返回的结果是 dp[m][n].

代码如下:

		class Solution {public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid){int m = obstacleGrid.size(), n = obstacleGrid[0].size();// 多开一行一列方便初始化vector<vector<int>> dp(m + 1, vector<int>(n + 1));dp[0][1] = 1; // 为了后面填表的正确// dp[i][j] 表示:⾛到 [i, j] 位置处,⼀共有多少种方式for (int i = 1; i <= m; i++){for (int j = 1; j <= n; j++){// 原矩阵中的位置不是障碍物if (obstacleGrid[i - 1][j - 1] != 1){dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}}return dp[m][n];}};

3. 珠宝的最高价值

题目链接 -> Leetcode -LCR 166.珠宝的最高价值

Leetcode -LCR 166.珠宝的最高价值

题目:现有一个记作二维矩阵 frame 的珠宝架,其中 frame[i][j] 为该位置珠宝的价值。拿取珠宝的规则为:

只能从架子的左上角开始拿珠宝
每次可以移动到右侧或下侧的相邻位置
到达珠宝架子的右下角时,停止拿取
注意:珠宝的价值都是大于 0 的。除非这个架子上没有任何珠宝,比如 frame = [[0]] 。

示例 1:
输入: frame = [[1, 3, 1], [1, 5, 1], [4, 2, 1]]
输出 : 12
解释 : 路径 1→3→5→2→1 可以拿到最高价值的珠宝

提示:

  • 0 < frame.length <= 200
  • 0 < frame[0].length <= 200

思路:本题的思路与上题的思路差不多,状态转移方程为:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j] .

代码如下:

		class Solution {public:int maxValue(vector<vector<int>>& grid){int m = grid.size(), n = grid[0].size();// 多开一行一列方便初始化vector<vector<int>> dp(m + 1, vector<int>(n + 1));// dp[i][j] 表示:⾛到 [i, j] 位置处,此时的最大价值for (int i = 1; i <= m; i++){for (int j = 1; j <= n; j++){dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];}}return dp[m][n];}};

4. 下降路径最小和

题目链接 -> Leetcode -931.下降路径最小和

Leetcode -931.下降路径最小和

题目:给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。
在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。
具体来说,位置(row, col) 的下一个元素应当是(row + 1, col - 1)、(row + 1, col) 或者(row + 1, col + 1) 。

示例 1:
输入:matrix = [[2, 1, 3], [6, 5, 4], [7, 8, 9]]
输出:13
解释:如图所示,为和最小的两条下降路径
在这里插入图片描述

示例 2:
输入:matrix = [[-19, 57], [-40, -5]]
输出: - 59
解释:如图所示,为和最小的下降路径

在这里插入图片描述

提示:

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 100
  • 100 <= matrix[i][j] <= 100

思路:

  1. 状态表示:dp[i][j] 表示:到达 [i, j] 位置时,所有下降路径中的最小和。
  2. 状态转移方程:对于普遍位置 [i, j] ,根据题意得,到达 [i, j] 位置可能有三种情况:
    i. 从正上方 [i - 1, j] 位置转移到 [i, j] 位置;
    ii. 从左上方 [i - 1, j - 1] 位置转移到 [i, j] 位置;
    iii. 从右上方 [i - 1, j + 1] 位置转移到 [i, j] 位置;
    我们要的是三种情况下的「最小值」,然后再加上矩阵在 [i, j] 位置的值。
    于是 dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j + 1])) + matrix[i][j] 。
  3. 返回值:注意这里不是返回 dp[m][n] 的值;题目要求「只要到达最后一行」就行了,因此这里应该返回「 dp 表中最后一行的最小值」。

代码如下:

		class Solution {public:int minFallingPathSum(vector<vector<int>>& matrix){int len = matrix.size();// 多开一行,两列,因为dp[i][j]的值需要用到dp[i - 1][j], dp[i - 1][j - 1], dp[i - 1][j + 1]vector<vector<int>> dp(len + 1, vector<int>(len + 2, INT_MAX));// 初始化,为了后面填表的正确性for (int i = 0; i <= len; i++) dp[0][i] = 0;// dp[i][j] 表示:到达 [i, j] 位置时,所有下降路径中的最小和for (int i = 1; i <= len; i++){for (int j = 1; j <= len; j++){dp[i][j] = min(min(dp[i - 1][j], dp[i - 1][j - 1]), dp[i - 1][j + 1]) + matrix[i - 1][j - 1];}}// 返回最后一行的最小值int ret = INT_MAX;for (int j = 0; j <= len; j++) ret = min(ret, dp[len][j]);return ret;}};

5. 最小路径和

题目链接 -> Leetcode -64.最小路径和

Leetcode -64.最小路径和

题目:给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例 1:
输入:grid = [[1, 3, 1], [1, 5, 1], [4, 2, 1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
在这里插入图片描述

示例 2:
输入:grid = [[1, 2, 3], [4, 5, 6]]
输出:12

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

思路:

  1. 状态表示:dp[i][j] 表示:到达 [i, j] 位置处,最小路径和是多少
  2. 状态转移:分析一下,如果 dp[i][j] 表示到达 [i, j] 位置处的最小路径和,那么到达[i, j] 位置之前的一小步,有两种情况:
    i. 从 [i - 1, j] 向下走一步,转移到 [i, j] 位置;
    ii. 从 [i, j - 1] 向右走一步,转移到 [i, j] 位置。
    由于到 [i, j] 位置两种情况,并且我们要找的是最小路径,因此只需要这两种情况下的最小值,再加上 [i, j] 位置上本身的值即可。也就是: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
  3. 返回值:根据状态表示,我们要返回的结果是 dp[m][n].

代码如下:

		class Solution {public:int minPathSum(vector<vector<int>>& grid){int m = grid.size(), n = grid[0].size();// dp[i][j] 表示:到达 [i, j] 位置处,最小路径和是多少vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));dp[0][1] = 0;for (int i = 1; i <= m; i++){for (int j = 1; j <= n; j++){dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];}}return dp[m][n];}};

6. 地下城游戏

题目链接 -> Leetcode -174.地下城游戏

Leetcode -174.地下城游戏

题目:恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。
我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);
其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。
为了尽快解救公主,骑士决定每次只 向右 或 向下 移动一步。
返回确保骑士能够拯救到公主所需的最低初始健康点数。
注意:任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

示例 1:
输入:dungeon = [[-2, -3, 3], [-5, -10, 1], [10, 30, -5]]
输出:7
解释:如果骑士遵循最佳路径:右->右->下->下 ,则骑士的初始健康点数至少为 7 。

示例 2:
输入:dungeon = [[0]]
输出:1

提示:

  • m == dungeon.length
  • n == dungeon[i].length
  • 1 <= m, n <= 200
  • 1000 <= dungeon[i][j] <= 1000

思路:

  1. 状态表示:这道题如果我们定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。那么我们分析状态转移的时候会有一个问题:那就是我们当前的健康点数还会受到后面的路径的影响。也就是从上往下的状态转移不能很好地解决问题。
    这个时候我们要换一种状态表示:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。综上所述,定义状态表示为:dp[i][j] 表示:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数。
  2. 状态转移方程:对于 dp[i][j] ,从 [i, j] 位置出发,下一步会有两种选择(为了方便理解,设 dp[i][j] 的最终答案是 x ):
    i. 走到右边,然后走向终点;那么我们在 [i, j] 位置的最低健康点数加上这一个位置的消耗,应该要大于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] ;通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最小
    值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j] ;
    ii. 走到下边,然后走向终点;那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要大于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最小值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j] ;
  • 综上所述,我们需要的是两种情况下的最小值,因此可得状态转移方程为:dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]

但是,如果当前位置的 dungeon[i][j] 是一个比较大的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会小于 1 ,那么骑士就会死亡。因此我们求出来的 dp[i][j] 如果小于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j] 与 1 取一个最大值即可:dp[i][j] = max(1, dp[i][j])

  1. 初始化:可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:
    i. 辅助结点里面的值要「保证后续填表是正确的」;
    ii. 「下标的映射关系」。
    在本题中,在 dp 表最后面添加一行,并且添加一列后,所有的值都先初始化为无穷大,然后让 dp[m][n - 1] = dp[m - 1][n] = 1 即可。

  2. 返回值:根据「状态表示」,我们需要返回 dp[0][0] 的值。

代码如下:

		class Solution {public:int calculateMinimumHP(vector<vector<int>>& dungeon){int m = dungeon.size(), n = dungeon[0].size();vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));dp[m][n - 1] = 1;// 从右下角往回推for (int i = m - 1; i >= 0; i--){for (int j = n - 1; j >= 0; j--){dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j];// 如果减到负数,说明这里的血包很大,即使是负数到这里都可以,但是这是不符合常理的// 所以需要将这里置成 1 即可if (dp[i][j] <= 0) dp[i][j] = 1;    }}// 返回最初位置return dp[0][0];}};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/244277.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(2)(2.4) CRSF/ELRS Telemetry

文章目录 前言 1 ArduPilot 参数编辑器 前言 &#xff01;Note ELRS&#xff08;ExpressLRS&#xff09;遥控系统使用穿越火线协议&#xff0c;连接方式类似。不过&#xff0c;它不像穿越火线那样提供双向遥测。 TBS CRSF 接收机与 ArduPilot 的接口中包含遥测和遥控信息。…

【大数据精讲】全量同步与CDC增量同步方案对比

目录 背景 名词解释 问题与挑战 FlinkCDC DataX 工作原理 调度流程 五、DataX 3.0六大核心优势 性能优化 背景 名词解释 CDC CDC又称变更数据捕获&#xff08;Change Data Capture&#xff09;&#xff0c;开启cdc的源表在插入INSERT、更新UPDATE和删除DELETE活动时…

c++ 包管理工具vcpkg

微软包管理工具 一、下载 git clone https://github.com/microsoft/vcpkg二、初始化 ./vcpkg/bootstrap-vcpkg.sh三、查看帮助文档 ./vcpkg/vcpkg help四、安装包 vcpkg/vcpkg install fmt五、查看安装包 vcpkg/vcpkg list输出 包实际安装路径 ./vcpkg/packages/fmt_x…

docker - compose 部署 Tomcat

目录 下面用 docker-compose 方法部署 Tomcat 1、准备工作 2、部署容器 启动容器 查看新启动的容器 3、总结 下面用 docker-compose 方法部署 Tomcat 1、准备工作 先在主机创建工作文件夹&#xff0c;为了放置 Tomcat 的配置文件等。创建文件夹的方法&#xff0c;自己搞…

JVM篇----第三篇

系列文章目录 文章目录 系列文章目录前言一、解释 Java 堆空间及 GC?二、JVM 内存区域三、程序计数器(线程私有)前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 一…

「Qt Widget中文示例指南」如何实现一个日历?(三)

Qt 是目前最先进、最完整的跨平台C开发工具。它不仅完全实现了一次编写&#xff0c;所有平台无差别运行&#xff0c;更提供了几乎所有开发过程中需要用到的工具。如今&#xff0c;Qt已被运用于超过70个行业、数千家企业&#xff0c;支持数百万设备及应用。 本文中的CalendarWi…

API接口安全总结

接口分类 HTTP接口 RPC接口&#xff08;客户端和服务器端的连接 例如游戏登陆&#xff09;非web协议&#xff0c;PRC 远程过程调用 Remote Procedure Call&#xff0c;其就是一个节点请求另外一个节点提供的服务。当两个物理分离的子系统需要建立逻辑上的关联时&#xff0c;R…

Centos7 两种方式安装 MySQL5.7 步骤 yum 、本地 tar 文件

一、使用 yum 源方式安装 1、卸载系统自带 mariadb MariaDB Server 是最流行的开源 关系型数据库 之一。它由 MySQL 的原始开发者制作&#xff0c;并保证保持开源。 在 CentOS 7 中默认安装有 MariaDB 可忽略&#xff0c;安装完成之后可以直接覆盖掉 MariaDB。 查看并卸载系统…

扩散模型公式推导

这篇文章将尝试推导扩散模型 DDPM 中涉及公式&#xff0c;主要参考两个 B 站视频&#xff1a; 大白话AI狗中赤兔 本文所用 PPT 元素均来自 UP 主&#xff0c;狗中赤兔和大白兔AI&#xff0c;特此感谢。 在证明开始&#xff0c;我们需要先对扩散模型有一个整体的认知。扩散模型…

(M)unity2D敌人的创建、人物属性设置,遇敌掉血

敌人的创建 1.敌人添加与组件设置 1&#xff09;添加敌人后&#xff0c;刚体添加&#xff0c;碰撞体添加&#xff08;一个碰撞体使猪在地上走&#xff0c;不接触人&#xff0c;另一个碰撞体组件使人和猪碰在一起产生伤害&#xff09; ①刚体 ②碰撞体一 设置的只在脚下&a…

【寒假打卡】Day01

文章目录 选择编程HJ99 自守数OR86 返回小于 N 的质数个数 选择 如下代码输出的是什么&#xff08; &#xff09; char a101; int sum200; a27;suma; printf("%d\n",sum);A: 32 B: 99 C: 328 D: 72 答案&#xff1a; C 解析&#xff1a; 首先&#xff0c;char a …

VIM工程的编译 / VI的快捷键记录

文章目录 VIM工程的编译 / VI的快捷键记录概述笔记工程的编译工程的编译 - 命令行vim工程的编译 - GUI版vim备注VIM的帮助文件位置VIM官方教程vim 常用快捷键启动vi时, 指定要编辑哪个文件正常模式光标的移动退出不保存 退出保存只保存不退出另存到指定文件移动到行首移动到行尾…

Spring RabbitMQ那些事(3-消息可靠传输和订阅)

目录 一、序言二、生产者确保消息发送成功1、为什么需要Publisher Confirms2、哪些消息会被确认处理成功 三、消费者保证消息被处理四、Spring RabbitMQ支持代码示例1、 application.yml2、RabbigtMQ配置3、可靠生产者配置4、可靠消费者配置5、测试用例 一、序言 在有些业务场…

告别无法访问的Github

告别无法访问的Github 最近在使用github的时候又登不上去了&#xff0c;挂着VPN都没用 但是自己很多项目都存在github&#xff0c;登不上去那不得损失很大 所以一行必须整点儿特殊手段来访问&#xff0c;顺便分享一下 1.加速器 网上很多解决方案都是在分享各种加速器来登陆…

大型语言模型 (LLM)全解读

一、大型语言模型&#xff08;Large Language Model&#xff09;定义 大型语言模型 是一种深度学习算法&#xff0c;可以执行各种自然语言处理 (NLP) 任务。 大型语言模型底层使用多个转换器模型&#xff0c; 底层转换器是一组神经网络。 大型语言模型是使用海量数据集进行训练…

【Linux】Linux中的日志查询方法

文章目录 linux日志与日志的查询方法更多journalctl用法journalctl用法案例部分日志路径说明推荐阅读 linux日志与日志的查询方法 在Linux系统中&#xff0c;日志文件用于记录系统的各种运行信息和错误消息。常见的日志文件包括但不限于/var/log/下的各种日志&#xff0c;如me…

Armv8-M的TrustZone技术之SAU寄存器总结

每个SAU寄存器是32位宽。下表显示了SAU寄存器概要。 5.1 SAU_CTRL register SAU_CTRL寄存器的特征如下图和表所示&#xff1a; 5.2 SAU_TYPE register 5.3 SAU_RNR register 5.4 SAU_RBAR register 5.5 SAU_RLAR register 5.6 SAU区域配置 当SAU启用时&#xff0c;未由已启用…

亚信安慧AntDB:AntDB-M元数据锁之对象锁(四)

l 对象锁 (per-object locks) 除了IX锁&#xff0c;其他类型都可以用于其他命名空间&#xff0c;这部分是最常用的锁类型。主要用于对数据库的某个具体元数据的并发控制。这类锁对象会比较多&#xff0c;对其有独特的管理&#xff0c;本文不再展开说明。 5.3 两种锁类型 根据…

桌面型物联网智能机器人设计(预告)

相关资料 桌面级群控机器人CoCube探索-2022--CSDN博客 视频&#xff1a; 能&#xff01;有&#xff01;多&#xff01;酷&#xff01;CoCube桌面级群控机器人 让我看看谁在SJTU里划水… 简要介绍 设计一个桌面型物联网智能机器人&#xff0c;以ESP32芯片为核心&#xff0c;配…

网络安全的使命:守护数字世界的稳定和信任

在数字化时代&#xff0c;网络安全的角色不仅仅是技术系统的守护者&#xff0c;更是数字社会的信任保卫者。网络安全的使命是保护、维护和巩固数字世界的稳定性、可靠性以及人们对互联网的信任。本文将深入探讨网络安全是如何履行这一使命的。 第一部分&#xff1a;信息资产的…