kafka summary

最近整体梳理之前用到的一些东西,回顾Kafka的时候好多东西都忘记了,把一些自己记的比较模糊并且感觉有用的东西整理一遍并且记忆一遍,仅用于记录以备后续回顾

Kafka的哪些场景中使用了零拷贝

  1. 生产者发送消息:在 Kafka 生产者发送消息时,使用零拷贝技术可以避免将数据从用户空间复制到内核空间,从而提高性能。具体来说,在发送消息之前,生产者将消息数据保存在内存缓冲区中,然后将指向缓冲区的指针传递给 Kafka 客户端库,客户端库再将指针传递给网络层,最终将数据发送到 Kafka 服务器。在这个过程中,数据在内存中只有一份副本,避免了数据的复制,从而提高了性能。

  2. 消费者接收消息:在 Kafka 消费者接收消息时,使用零拷贝技术可以避免将数据从内核空间复制到用户空间,从而提高性能。具体来说,在接收消息之前,消费者会注册一个内存映射文件(Memory-mapped file),然后 Kafka 客户端库会将消息数据写入到这个内存映射文件中。消费者只需要读取这个内存映射文件中的数据,就可以获取消息,避免了数据的复制,从而提高了性能。

  3. 消费者读取磁盘上的消息:Kafka 中的消息默认存储在磁盘上,消费者需要从磁盘上读取消息。使用零拷贝技术,可以将磁盘上的消息直接映射到内存中,而不需要将数据从磁盘复制到内存,从而提高了性能。

总之,Kafka 使用零拷贝技术来提高网络传输性能和磁盘读取性能,在发送消息和接收消息等场景中都得到了广泛应用。

为什么Kafka不支持读写分离?

在 Kafka 中,生产者写入消息、消费者读取消息的操作都是与 leader 副本进行交互的,从 而实现的是一种主写主读的生产消费模型。

Kafka 并不支持主写从读,因为主写从读有 2 个很明 显的缺点:

数据一致性问题。数据从主节点转到从节点必然会有一个延时的时间窗口,这个时间 窗口会导致主从节点之间的数据不一致。某一时刻,在主节点和从节点中 A 数据的值都为 X, 之后将主节点中 A 的值修改为 Y,那么在这个变更通知到从节点之前,应用读取从节点中的 A 数据的值并不为最新的 Y,由此便产生了数据不一致的问题。
延时问题。类似 Redis 这种组件,数据从写入主节点到同步至从节点中的过程需要经历网络→主节点内存→网络→从节点内存这几个阶段,整个过程会耗费一定的时间。而在 Kafka 中,主从同步会比 Redis 更加耗时,它需要经历网络→主节点内存→主节点磁盘→网络→从节点内存→从节点磁盘这几个阶段。对延时敏感的应用而言,主写从读的功能并不太适用。

Kafka 如何保证高可用?

Kafka 的基本架构组成是:由多个 broker 组成一个集群,每个 broker 是一个节点;当创建一个 topic 时,这个 topic 会被划分为多个 partition,每个 partition 可以存在于不同的 broker 上,每个 partition 只存放一部分数据。

这就是天然的分布式消息队列,就是说一个 topic 的数据,是分散放在多个机器上的,每个机器就放一部分数据

Kafka 0.8 版本之前,是没有 HA 机制的,当任何一个 broker 所在节点宕机了,这个 broker 上的 partition 就无法提供读写服务,所以这个版本之前,Kafka 没有什么高可用性可言。

Kafka 0.8 以后,提供了 HA 机制,就是 replica 副本机制。每个 partition 上的数据都会同步到其它机器,形成自己的多个 replica 副本。所有 replica 会选举一个 leader 出来,消息的生产者和消费者都跟这个 leader 打交道,其他 replica 作为 follower。写的时候,leader 会负责把数据同步到所有 follower 上去,读的时候就直接读 leader 上的数据即可。Kafka 负责均匀的将一个 partition 的所有 replica 分布在不同的机器上,这样才可以提高容错性。

拥有了 replica 副本机制,如果某个 broker 宕机了,这个 broker 上的 partition 在其他机器上还存在副本。如果这个宕机的 broker 上面有某个 partitionleader,那么此时会从其 follower 中重新选举一个新的 leader 出来,这个新的 leader 会继续提供读写服务,这就有达到了所谓的高可用性。

写数据的时候,生产者只将数据写入 leader 节点,leader 会将数据写入本地磁盘,接着其他 follower 会主动从 leader 来拉取数据,follower 同步好数据了,就会发送 ackleaderleader 收到所有 followerack 之后,就会返回写成功的消息给生产者。

消费数据的时候,消费者只会从 leader 节点去读取消息,但是只有当一个消息已经被所有 follower 都同步成功返回 ack 的时候,这个消息才会被消费者读到。

img

什么是消费者组

消费者组是Kafka独有的概念,即消费者组是Kafka提供的可扩展且具有容错性的消费者机制。

但实际上,消费者组(Consumer Group)其实包含两个概念,作为队列,消费者组允许你分割数据处理到一组进程集合上(即一个消费者组中可以包含多个消费者进程,他们共同消费该topic的数据),这有助于你的消费能力的动态调整;作为发布-订阅模型(publish-subscribe),Kafka允许你将同一份消息广播到多个消费者组里,以此来丰富多种数据使用场景。

需要注意的是:在消费者组中,多个实例共同订阅若干个主题,实现共同消费。同一个组下的每个实例都配置有相同的组ID,被分配不同的订阅分区。当某个实例挂掉的时候,其他实例会自动地承担起它负责消费的分区。 因此,消费者组在一定程度上也保证了消费者程序的高可用性。

kafka 为什么那么快?

  • Cache Filesystem Cache PageCache缓存
  • 顺序写:由于现代的操作系统提供了预读和写技术,磁盘的顺序写大多数情况下比随机写内存还要快。
  • Zero-copy:零拷技术减少拷贝次数
  • Batching of Messages:批量量处理。合并小的请求,然后以流的方式进行交互,直顶网络上限。
  • Pull 拉模式:使用拉模式进行消息的获取消费,与消费端处理能力相符。

Kafka如何保证消息不丢失?

首先需要弄明白消息为什么会丢失,对于一个消息队列,会有 生产者MQ消费者 这三个角色,在这三个角色数据处理和传输过程中,都有可能会出现消息丢失。

消息丢失的原因以及解决办法:

消费者异常导致的消息丢失

消费者可能导致数据丢失的情况是:消费者获取到了这条消息后,还未处理,Kafka 就自动提交了 offset,这时 Kafka 就认为消费者已经处理完这条消息,其实消费者才刚准备处理这条消息,这时如果消费者宕机,那这条消息就丢失了。

消费者引起消息丢失的主要原因就是消息还未处理完 Kafka 会自动提交了 offset,那么只要关闭自动提交 offset,消费者在处理完之后手动提交 offset,就可以保证消息不会丢失。但是此时需要注意重复消费问题,比如消费者刚处理完,还没提交 offset,这时自己宕机了,此时这条消息肯定会被重复消费一次,这就需要消费者根据实际情况保证幂等性。

生产者数据传输导致的消息丢失

对于生产者数据传输导致的数据丢失主常见情况是生产者发送消息给 Kafka,由于网络等原因导致消息丢失,对于这种情况也是通过在 producer 端设置 acks=all 来处理,这个参数是要求 leader 接收到消息后,需要等到所有的 follower 都同步到了消息之后,才认为本次写成功了。如果没满足这个条件,生产者会自动不断的重试。

Kafka 导致的消息丢失

Kafka 导致的数据丢失一个常见的场景就是 Kafka 某个 broker 宕机,,而这个节点正好是某个 partitionleader 节点,这时需要重新重新选举该 partitionleader。如果该 partitionleader 在宕机时刚好还有些数据没有同步到 follower,此时 leader 挂了,在选举某个 followerleader 之后,就会丢失一部分数据。

对于这个问题,Kafka 可以设置如下 4 个参数,来尽量避免消息丢失:

  • topic 设置 replication.factor 参数:这个值必须大于 1,要求每个 partition 必须有至少 2 个副本;
  • Kafka 服务端设置 min.insync.replicas 参数:这个值必须大于 1,这个参数的含义是一个 leader 至少感知到有至少一个 follower 还跟自己保持联系,没掉队,这样才能确保 leader 挂了还有一个 follower 节点。
  • producer 端设置 acks=all,这个是要求每条数据,必须是写入所有 replica 之后,才能认为是写成功了;
  • producer 端设置 retries=MAX(很大很大很大的一个值,无限次重试的意思):这个参数的含义是一旦写入失败,就无限重试,卡在这里了。

Kafka 如何保证消息的顺序性

在某些业务场景下,我们需要保证对于有逻辑关联的多条MQ消息被按顺序处理,比如对于某一条数据,正常处理顺序是新增-更新-删除,最终结果是数据被删除;如果消息没有按序消费,处理顺序可能是删除-新增-更新,最终数据没有被删掉,可能会产生一些逻辑错误。对于如何保证消息的顺序性,主要需要考虑如下两点:

  • 如何保证消息在 Kafka 中顺序性;
  • 如何保证消费者处理消费的顺序性。

如何保证消息在 Kafka 中顺序性

对于 Kafka,如果我们创建了一个 topic,默认有三个 partition。生产者在写数据的时候,可以指定一个 key,比如在订单 topic 中我们可以指定订单 id 作为 key,那么相同订单 id 的数据,一定会被分发到同一个 partition 中去,而且这个 partition 中的数据一定是有顺序的。消费者从 partition 中取出来数据的时候,也一定是有顺序的。通过制定 key 的方式首先可以保证在 kafka 内部消息是有序的。

如何保证消费者处理消费的顺序性

对于某个 topic 的一个 partition,只能被同组内部的一个 consumer 消费,如果这个 consumer 内部还是单线程处理,那么其实只要保证消息在 MQ 内部是有顺序的就可以保证消费也是有顺序的。但是单线程吞吐量太低,在处理大量 MQ 消息时,我们一般会开启多线程消费机制,那么如何保证消息在多个线程之间是被顺序处理的呢?对于多线程消费我们可以预先设置 N 个内存 Queue,具有相同 key 的数据都放到同一个内存 Queue 中;然后开启 N 个线程,每个线程分别消费一个内存 Queue 的数据即可,这样就能保证顺序性。当然,消息放到内存 Queue 中,有可能还未被处理,consumer 发生宕机,内存 Queue 中的数据会全部丢失,这就转变为上面提到的如何保证消息的可靠传输的问题了。

14. Kafka中的ISR、AR代表什么?ISR的伸缩指什么?

  • ISR:In-Sync Replicas 副本同步队列
  • AR:Assigned Replicas 所有副本

ISR是由leader维护,follower从leader同步数据有一些延迟(包括延迟时间replica.lag.time.max.ms延迟条数replica.lag.max.messages两个维度,当前最新的版本0.10.x中只支持replica.lag.time.max.ms这个维度),任意一个超过阈值都会把follower剔除出ISR,存入OSR(Outof-Sync Replicas)列表,新加入的follower也会先存放在OSR中。

AR=ISR+OSR。

分区Leader选举策略有几种?

分区的Leader副本选举对用户是完全透明的,它是由Controller独立完成的。你需要回答的是,在哪些场景下,需要执行分区Leader选举。每一种场景对应于一种选举策略。

  • OfflinePartition Leader选举:每当有分区上线时,就需要执行Leader选举。所谓的分区上线,可能是创建了新分区,也可能是之前的下线分区重新上线。这是最常见的分区Leader选举场景。
  • ReassignPartition Leader选举:当你手动运行kafka-reassign-partitions命令,或者是调用Admin的alterPartitionReassignments方法执行分区副本重分配时,可能触发此类选举。假设原来的AR是[1,2,3],Leader是1,当执行副本重分配后,副本集合AR被设置成[4,5,6],显然,Leader必须要变更,此时会发生Reassign Partition Leader选举。
  • PreferredReplicaPartition Leader选举:当你手动运行kafka-preferred-replica-election命令,或自动触发了Preferred Leader选举时,该类策略被激活。所谓的Preferred Leader,指的是AR中的第一个副本。比如AR是[3,2,1],那么,Preferred Leader就是3。
  • ControlledShutdownPartition Leader选举:当Broker正常关闭时,该Broker上的所有Leader副本都会下线,因此,需要为受影响的分区执行相应的Leader选举。

这4类选举策略的大致思想是类似的,即从AR中挑选首个在ISR中的副本,作为新Leader。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/246040.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

暴力破解

暴力破解工具使用汇总 1.查看密码加密方式 在线网站:https://cmd5.com/ http://www.158566.com/ https://encode.chahuo.com/kali:hash-identifier2.hydra 用于各种服务的账号密码爆破:FTP/Mysql/SSH/RDP...常用参数 -l name 指定破解登录…

windows定时任务的查看、取消、启动和创建

一、查看 Windows 自动执行的指令 1.使用任务计划程序:任务计划程序是 Windows 内置的工具,可以用于创建、编辑和管理计划任务。您可以按照以下步骤查看已设置的计划任务: 1.1 按下 Win R 键,然后输入 “taskschd.msc”&#xff…

Bitbucket第一次代码仓库创建/提交/创建新分支/合并分支/忽略ignore

1. 首先要在bitbucket上创建一个项目,这个我没有权限创建,是找的管理员创建的。 管理员创建之后,这个项目给了我权限,我就可以创建我的代码仓库了。 2. 点击这个Projects下的具体项目名字,就会进入这样一个页面&#…

docker 存储管理

文章目录 docker 存储管理容器存储方案docker 容器存储解决方案 docker 存储驱动基本概述存储驱动的选择原则主流的 docker 存储驱动docker 版本支持的存储驱动 overlay2 存储驱动OverlayFSoverlay2 存储驱动要求配置 docker 使用 overlay2 驱动 overlay2 存储驱动的工作机制Ov…

Azure Private endpoint DNS 记录是如何解析的

Private endpoint 从本质上来说是Azure 服务在Azure 虚拟网络中安插的一张带私有地址的网卡。 举例来说如果Storage account在没有绑定private endpoint之前,查询Storage account的DNS记录会是如下情况: Seq Name …

Hive实战 —— 电商数据分析(全流程详解 真实数据)

目录 前言需求概述数据清洗数据分析一、前期准备二、项目1. 数据准备和了解2.确定数据粒度和有效列3.HDFS创建用于上传数据的目录4.建库数仓分层 5.建表5.1近源层建表5.2. 明细层建表为什么要构建时间维度表?如何构建时间维度表? 5.3 轻聚层建表6. 指标数…

eduSRC那些事儿-2(sql注入类+文件上传类)

点击星标,即时接收最新推文 本文对edusrc挖掘的部分漏洞进行整理,将案例脱敏后输出成文章,不包含0DAY/BYPASS的案例过程,仅对挖掘思路和方法进行相关讲解。 sql注入类 sql注入配合万能密钥进后台 在内网中扫描到网络运维资料管理系…

Linux中断 -- 中断路由、优先级、数据和标识

目录 1.中断路由 2.中断优先级 3.中断平衡 4.Linux内核中重要的数据结构 5.中断标识 承前文,本文从中断路由、优先级、数据结构和标识意义等方面对Linux内核中断进行一步的解析。 1.中断路由 Aset affinity flow GIC文中有提到SPI类型中断的路由控制器寄存器为…

Python基础语法:代码规范、判断语句与循环语句

目录 一、代码规范 二、判断语句 三、循环语句 总结: Python是一种高级、动态类型的编程语言,其语法清晰、简洁,易于学习。本文将介绍Python基础语法中的代码规范、判断语句和循环语句。 一、代码规范 良好的代码规范可以提高代码的可读…

element-ui 树形控件 实现点击某个节点获取本身节点和底下所有的子节点数据

1、需求&#xff1a;点击树形控件中的某个节点&#xff0c;需要拿到它本身和底下所有的子节点的id 1、树形控件代码 <el-tree:data"deptOptions"node-click"getVisitCheckedNodes"ref"target_tree_Speech"node-key"id":default-ex…

Unity - gamma space下还原linear space效果

文章目录 环境目的环境问题实践结果处理要点处理细节【OnPostProcessTexture 实现 sRGB 2 Linear 编码】 - 预处理【封装个简单的 *.cginc】 - shader runtime【shader需要gamma space下还原记得 #define _RECOVERY_LINEAR_IN_GAMMA】【颜色参数应用前 和 颜色贴图采样后】【灯…

tee漏洞学习-翻译-1:从任何上下文中获取 TrustZone 内核中的任意代码执行

原文&#xff1a;http://bits-please.blogspot.com/2015/03/getting-arbitrary-code-execution-in.html 目标是什么&#xff1f; 这将是一系列博客文章&#xff0c;详细介绍我发现的一系列漏洞&#xff0c;这些漏洞将使我们能够将任何用户的权限提升到所有用户的最高权限 - 在…

WEB安全渗透测试-pikachuDVWAsqli-labsupload-labsxss-labs靶场搭建(超详细)

目录 phpstudy下载安装 一&#xff0c;pikachu靶场搭建 1.下载pikachu 2.新建一个名为pikachu的数据库 3.pikachu数据库配置 ​编辑 4.创建网站 ​编辑 5.打开网站 6.初始化安装 二&#xff0c;DVWA靶场搭建 1.下载DVWA 2.创建一个名为dvwa的数据库 3.DVWA数据库配…

13、Kafka ------ kafka 消费者API用法(消费者消费消息代码演示)

目录 kafka 消费者API用法消费者API使用消费者API消费消息消费者消费消息的代码演示1、官方API示例2、创建消费者类3、演示消费结果1、演示消费者属于同一个消费者组2、演示消费者不属于同一个消费者组3、停止线程不适用4、一些参数解释 代码生产者&#xff1a;MessageProducer…

flutter设置windows是否显示标题栏和状态栏和全屏显示

想要让桌面软件实现全屏和不显示状态栏或者自定义状态栏&#xff0c;就可以使用window_manager这个依赖库&#xff0c;使用起来还是非常方便的&#xff0c;可以自定义显示窗口大小和位置&#xff0c;还有设置标题栏是否展示等内容&#xff0c;也可以设置可拖动区域。官方仓库地…

万界星空科技可视化数据大屏的作用

随着科技的不断发展和进步&#xff0c;当前各种数据化的设备也是如同雨后春笋般冒了出来&#xff0c;并且其可以说是给我们带来了极大的便利的。在这其中&#xff0c;数据大屏就是非常具有代表性的一个例子。 数据大屏的主要作用包括&#xff1a; 数据分析&#xff1a;数据大屏…

【mongoDB】文档 CRUD

目录 1.插入文档 批量插入&#xff1a; 2.查询文档 3.更新文档 4.删除文档 deleteOne() deleteMany() findOneAndDelete() 1.插入文档 可以使用 insert () 方法或者 save() 方法向集合中插入文档 语法如下&#xff1a; db.collection_name.insert(document) collectio…

软考培训机构哪家比较好?各软考培训机构排名如何?

先放上机构测评图 一、机构情况 &#xff08;1&#xff09;主营业务 大多数软考培训机构主要致力于IT培训或者软件行业。这些机构的课程更加专业&#xff0c;因为他们起源于该行业。我相信报考软考的同学大部分也是从事这个行业的。个人认为选择这类机构进行培训会有更多好处…

[C#]winform部署yolov5实例分割模型onnx

【官方框架地址】 https://github.com/ultralytics/yolov5 【算法介绍】 YOLOv5实例分割是目标检测算法的一个变种&#xff0c;主要用于识别和分割图像中的多个物体。它是在YOLOv5的基础上&#xff0c;通过添加一个实例分割模块来实现的。 在实例分割中&#xff0c;算法不仅…

C++输入输出流

输入/输出流类&#xff1a;iostream---------i input&#xff08;输入&#xff09; o output&#xff08;输出&#xff09; stream&#xff1a;流 iostream&#xff1a; istream类&#xff1a;输入流类-------------cin&#xff1a;输入流类的对象 ostre…