pytorch 实现中文文本分类

🍨 本文为[🔗365天深度学习训练营学习记录博客🍦 参考文章:365天深度学习训练营🍖 原作者:[K同学啊 | 接辅导、项目定制]\n🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warningswarnings.filterwarnings("ignore")  # 忽略警告信息# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

train.csv 链接:https://pan.baidu.com/s/1Vnyvo5T5eSuzb0VwTsznqA?pwd=fqok 提取码:fqok 
import pandas as pd# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()# 构建数据集迭代器
def coustom_data_iter(texts, labels):for x, y in zip(texts, labels):yield x, ytrain_iter = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])

1.构建词典:

from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba# 中文分词方法
tokenizer = jieba.lcutdef yield_tokens(data_iter):for text, in data_iter:yield tokenizer(text)vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])

 调用vocab(词汇表)对一个中文句子进行索引转换,这个句子被分词后得到的词汇列表会被转换成它们在词汇表中的索引。

print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))

生成一个标签列表,用于查看在数据集中所有可能的标签类型。 

label_name = list(set(train_data[1].values[:]))
print(label_name)

 创建了两个lambda函数,一个用于将文本转换成词汇索引,另一个用于将标签文本转换成它们在label_name列表中的索引。

text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))

2.生成数据批次和迭代器

from torch.utils.data import DataLoaderdef collate_batch(batch):label_list, text_list, offsets = [], [], [0]for (_text, _label) in batch:# 标签列表label_list.append(label_pipeline(_label))# 文本列表processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)text_list.append(processed_text)# 偏移量,即词汇的起始位置offsets.append(processed_text.size(0))label_list = torch.tensor(label_list, dtype=torch.int64)text_list = torch.cat(text_list)offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和return text_list.to(device), label_list.to(device), offsets.to(device)# 数据加载器,调用示例
dataloader = DataLoader(train_iter,batch_size=8,shuffle=False,collate_fn=collate_batch)
  • collate_batch函数用于处理数据加载器中的批次。它接收一个批次的数据,处理它,并返回适合模型训练的数据格式。
  • 在这个函数内部,它遍历批次中的每个文本和标签对,将标签添加到label_list,将文本通过text_pipeline函数处理后转换为tensor,并添加到text_list
  • offsets列表用于存储每个文本的长度,这对于后续的文本处理非常有用,尤其是当你需要知道每个文本在拼接的大tensor中的起始位置时。
  • text_listtorch.cat进行拼接,形成一个连续的tensor。
  • offsets列表的最后一个元素不包括,然后使用cumsum函数在第0维计算累积和,这为每个序列提供了一个累计的偏移量。

3.搭建模型与初始化

from torch import nnclass TextClassificationModel(nn.Module):def __init__(self, vocab_size, embed_dim, num_class):super(TextClassificationModel, self).__init__()self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)self.fc = nn.Linear(embed_dim, num_class)self.init_weights()def init_weights(self):initrange = 0.5self.embedding.weight.data.uniform_(-initrange, initrange)self.fc.weight.data.uniform_(-initrange, initrange)self.fc.bias.data.zero_()def forward(self, text, offsets):embedded = self.embedding(text, offsets)return self.fc(embedded)num_class = len(label_name)  # 类别数,根据label_name的长度确定
vocab_size = len(vocab)      # 词汇表的大小,根据vocab的长度确定
em_size = 64                 # 嵌入向量的维度设置为64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)  # 创建模型实例并移动到计算设备

4.模型训练及评估函数

trainevaluate分别用于训练和评估文本分类模型。

训练函数 train 的工作流程如下:

  1. 将模型设置为训练模式。
  2. 初始化总准确率、训练损失和总计数变量。
  3. 记录训练开始的时间。
  4. 遍历数据加载器,对每个批次:
    • 进行预测。
    • 清零优化器的梯度。
    • 计算损失(使用一个损失函数,例如交叉熵)。
    • 反向传播计算梯度。
    • 通过梯度裁剪防止梯度爆炸。
    • 执行一步优化器更新模型权重。
  5. 更新总准确率和总损失。
  6. 每隔一定间隔,打印训练进度和统计信息。

评估函数 evaluate 的工作流程如下:

  1. 将模型设置为评估模式。
  2. 初始化总准确率和总损失。
  3. 不计算梯度(为了节省内存和计算资源)。
  4. 遍历数据加载器,对每个批次:
    • 进行预测。
    • 计算损失。
    • 更新总准确率和总损失。
  5. 返回整体的准确率和平均损失。

代码实现:

import timedef train(dataloader):model.train()  # 切换到训练模式total_acc, train_loss, total_count = 0, 0, 0log_interval = 50start_time = time.time()for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)optimizer.zero_grad()  # 梯度归零loss = criterion(predicted_label, label)  # 计算损失loss.backward()  # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪optimizer.step()  # 优化器更新权重# 记录acc和losstotal_acc += (predicted_label.argmax(1) == label).sum().item()train_loss += loss.item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:3d} | {:5d}/{:5d} batches ''| accuracy {:8.3f} | loss {:8.5f}'.format(epoch, idx, len(dataloader),total_acc/total_count, train_loss/total_count))total_acc, train_loss, total_count = 0, 0, 0start_time = time.time()def evaluate(dataloader):model.eval()  # 切换到评估模式total_acc, total_count = 0, 0with torch.no_grad():for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)loss = criterion(predicted_label, label)  # 计算losstotal_acc += (predicted_label.argmax(1) == label).sum().item()total_count += label.size(0)return total_acc/total_count, total_count

5.模型训练

  • 设置训练的轮数、学习率和批次大小。
  • 定义交叉熵损失函数、随机梯度下降优化器和学习率调度器。
  • 将训练数据转换为一个map样式的数据集,并将其分成训练集和验证集。
  • 创建训练和验证的数据加载器。
  • 开始训练循环,每个epoch都会训练模型并在验证集上评估模型的准确率和损失。
  • 如果验证准确率没有提高,则按计划降低学习率。
  • 打印每个epoch结束时的统计信息,包括时间、准确率、损失和学习率。
from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
EPOCHS = 10  # epoch数量
LR = 5  # 学习速率
BATCH_SIZE = 64  # 训练的batch大小# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None# 准备数据集
train_iter = coustom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)split_train_, split_valid_ = random_split(train_dataset,[int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)# 训练循环
for epoch in range(1, EPOCHS + 1):epoch_start_time = time.time()train(train_dataloader)val_acc, val_loss = evaluate(valid_dataloader)# 更新学习率的策略lr = optimizer.state_dict()['param_groups'][0]['lr']if total_accu is not None and total_accu > val_acc:scheduler.step()else:total_accu = val_accprint('-' * 69)print('| end of epoch {:3d} | time: {:4.2f}s | ''valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))print('-' * 69)

 运行结果:

| epoch   1 |    50/  152 batches | accuracy    0.423 | loss  0.03079
| epoch   1 |   100/  152 batches | accuracy    0.700 | loss  0.01912
| epoch   1 |   150/  152 batches | accuracy    0.776 | loss  0.01347
---------------------------------------------------------------------
| end of epoch   1 | time: 1.53s | valid accuracy 0.777 | valid loss 2420.000 | lr 5.000000
| epoch   2 |    50/  152 batches | accuracy    0.812 | loss  0.01056
| epoch   2 |   100/  152 batches | accuracy    0.843 | loss  0.00871
| epoch   2 |   150/  152 batches | accuracy    0.844 | loss  0.00846
---------------------------------------------------------------------
| end of epoch   2 | time: 1.45s | valid accuracy 0.842 | valid loss 2420.000 | lr 5.000000
| epoch   3 |    50/  152 batches | accuracy    0.883 | loss  0.00653
| epoch   3 |   100/  152 batches | accuracy    0.879 | loss  0.00634
| epoch   3 |   150/  152 batches | accuracy    0.883 | loss  0.00627
---------------------------------------------------------------------
| end of epoch   3 | time: 1.44s | valid accuracy 0.865 | valid loss 2420.000 | lr 5.000000
| epoch   4 |    50/  152 batches | accuracy    0.912 | loss  0.00498
| epoch   4 |   100/  152 batches | accuracy    0.906 | loss  0.00495
| epoch   4 |   150/  152 batches | accuracy    0.915 | loss  0.00461
---------------------------------------------------------------------
| end of epoch   4 | time: 1.50s | valid accuracy 0.876 | valid loss 2420.000 | lr 5.000000
| epoch   5 |    50/  152 batches | accuracy    0.935 | loss  0.00386
| epoch   5 |   100/  152 batches | accuracy    0.934 | loss  0.00390
| epoch   5 |   150/  152 batches | accuracy    0.932 | loss  0.00362
---------------------------------------------------------------------
| end of epoch   5 | time: 1.59s | valid accuracy 0.881 | valid loss 2420.000 | lr 5.000000
| epoch   6 |    50/  152 batches | accuracy    0.947 | loss  0.00313
| epoch   6 |   100/  152 batches | accuracy    0.949 | loss  0.00307
| epoch   6 |   150/  152 batches | accuracy    0.949 | loss  0.00286
---------------------------------------------------------------------
| end of epoch   6 | time: 1.68s | valid accuracy 0.891 | valid loss 2420.000 | lr 5.000000
| epoch   7 |    50/  152 batches | accuracy    0.960 | loss  0.00243
| epoch   7 |   100/  152 batches | accuracy    0.963 | loss  0.00224
| epoch   7 |   150/  152 batches | accuracy    0.959 | loss  0.00252
---------------------------------------------------------------------
| end of epoch   7 | time: 1.53s | valid accuracy 0.892 | valid loss 2420.000 | lr 5.000000
| epoch   8 |    50/  152 batches | accuracy    0.972 | loss  0.00186
| epoch   8 |   100/  152 batches | accuracy    0.974 | loss  0.00184
| epoch   8 |   150/  152 batches | accuracy    0.967 | loss  0.00201
---------------------------------------------------------------------
| end of epoch   8 | time: 1.43s | valid accuracy 0.895 | valid loss 2420.000 | lr 5.000000
| epoch   9 |    50/  152 batches | accuracy    0.981 | loss  0.00138
| epoch   9 |   100/  152 batches | accuracy    0.977 | loss  0.00165
| epoch   9 |   150/  152 batches | accuracy    0.980 | loss  0.00147
---------------------------------------------------------------------
| end of epoch   9 | time: 1.48s | valid accuracy 0.900 | valid loss 2420.000 | lr 5.000000
| epoch  10 |    50/  152 batches | accuracy    0.987 | loss  0.00117
| epoch  10 |   100/  152 batches | accuracy    0.985 | loss  0.00121
| epoch  10 |   150/  152 batches | accuracy    0.984 | loss  0.00121
---------------------------------------------------------------------
| end of epoch  10 | time: 1.45s | valid accuracy 0.902 | valid loss 2420.000 | lr 5.000000
---------------------------------------------------------------------

6.模型评估

test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))

7.模型测试

def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text))output = model(text, torch.tensor([0]))return output.argmax(1).item()# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"model = model.to("cpu")print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

 8.全部代码(部分修改):

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warningswarnings.filterwarnings("ignore")  # 忽略警告信息# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)import pandas as pd# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()# 构建数据集迭代器
def custom_data_iter(texts, labels):for x, y in zip(texts, labels):yield x, ytrain_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba# 中文分词方法
tokenizer = jieba.lcutdef yield_tokens(data_iter):for text,_ in data_iter:yield tokenizer(text)vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))label_name = list(set(train_data[1].values[:]))
print(label_name)text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))from torch.utils.data import DataLoaderdef collate_batch(batch):label_list, text_list, offsets = [], [], [0]for (_text, _label) in batch:# 标签列表label_list.append(label_pipeline(_label))# 文本列表processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)text_list.append(processed_text)# 偏移量,即词汇的起始位置offsets.append(processed_text.size(0))label_list = torch.tensor(label_list, dtype=torch.int64)text_list = torch.cat(text_list)offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和return text_list.to(device), label_list.to(device), offsets.to(device)# 数据加载器,调用示例
dataloader = DataLoader(train_iter,batch_size=8,shuffle=False,collate_fn=collate_batch)from torch import nnclass TextClassificationModel(nn.Module):def __init__(self, vocab_size, embed_dim, num_class):super(TextClassificationModel, self).__init__()self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)self.fc = nn.Linear(embed_dim, num_class)self.init_weights()def init_weights(self):initrange = 0.5self.embedding.weight.data.uniform_(-initrange, initrange)self.fc.weight.data.uniform_(-initrange, initrange)self.fc.bias.data.zero_()def forward(self, text, offsets):embedded = self.embedding(text, offsets)return self.fc(embedded)
num_class = len(label_name)
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)import timedef train(dataloader):model.train()  # 切换到训练模式total_acc, train_loss, total_count = 0, 0, 0log_interval = 50start_time = time.time()for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)optimizer.zero_grad()  # 梯度归零loss = criterion(predicted_label, label)  # 计算损失loss.backward()  # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪optimizer.step()  # 优化器更新权重# 记录acc和losstotal_acc += (predicted_label.argmax(1) == label).sum().item()train_loss += loss.item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:3d} | {:5d}/{:5d} batches ''| accuracy {:8.3f} | loss {:8.5f}'.format(epoch, idx, len(dataloader),total_acc/total_count, train_loss/total_count))total_acc, train_loss, total_count = 0, 0, 0start_time = time.time()def evaluate(dataloader):model.eval()  # 切换到评估模式total_acc, total_count = 0, 0with torch.no_grad():for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)loss = criterion(predicted_label, label)  # 计算losstotal_acc += (predicted_label.argmax(1) == label).sum().item()total_count += label.size(0)return total_acc/total_count, total_countfrom torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
EPOCHS = 10  # epoch数量
LR = 5  # 学习速率
BATCH_SIZE = 64  # 训练的batch大小# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None# 准备数据集
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)split_train_, split_valid_ = random_split(train_dataset,[int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)# 训练循环
for epoch in range(1, EPOCHS + 1):epoch_start_time = time.time()train(train_dataloader)val_acc, val_loss = evaluate(valid_dataloader)# 更新学习率的策略lr = optimizer.state_dict()['param_groups'][0]['lr']if total_accu is not None and total_accu > val_acc:scheduler.step()else:total_accu = val_accprint('-' * 69)print('| end of epoch {:3d} | time: {:4.2f}s | ''valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))print('-' * 69)test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text))output = model(text, torch.tensor([0]))return output.argmax(1).item()# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"model = model.to("cpu")print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

9.代码改进及优化

9.1优化器: 尝试不同的优化算法,如Adam、RMSprop替换原来的SGD优化器部分

9.1.1使用Adam优化器:

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warningswarnings.filterwarnings("ignore")  # 忽略警告信息# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)import pandas as pd# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()# 构建数据集迭代器
def custom_data_iter(texts, labels):for x, y in zip(texts, labels):yield x, ytrain_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba# 中文分词方法
tokenizer = jieba.lcutdef yield_tokens(data_iter):for text,_ in data_iter:yield tokenizer(text)vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))label_name = list(set(train_data[1].values[:]))
print(label_name)text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))from torch.utils.data import DataLoaderdef collate_batch(batch):label_list, text_list, offsets = [], [], [0]for (_text, _label) in batch:# 标签列表label_list.append(label_pipeline(_label))# 文本列表processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)text_list.append(processed_text)# 偏移量,即词汇的起始位置offsets.append(processed_text.size(0))label_list = torch.tensor(label_list, dtype=torch.int64)text_list = torch.cat(text_list)offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和return text_list.to(device), label_list.to(device), offsets.to(device)# 数据加载器,调用示例
dataloader = DataLoader(train_iter,batch_size=8,shuffle=False,collate_fn=collate_batch)from torch import nnclass TextClassificationModel(nn.Module):def __init__(self, vocab_size, embed_dim, num_class):super(TextClassificationModel, self).__init__()self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)self.fc = nn.Linear(embed_dim, num_class)self.init_weights()def init_weights(self):initrange = 0.5self.embedding.weight.data.uniform_(-initrange, initrange)self.fc.weight.data.uniform_(-initrange, initrange)self.fc.bias.data.zero_()def forward(self, text, offsets):embedded = self.embedding(text, offsets)return self.fc(embedded)
num_class = len(label_name)
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)import timedef train(dataloader):model.train()  # 切换到训练模式total_acc, train_loss, total_count = 0, 0, 0log_interval = 50start_time = time.time()for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)optimizer.zero_grad()  # 梯度归零loss = criterion(predicted_label, label)  # 计算损失loss.backward()  # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪optimizer.step()  # 优化器更新权重# 记录acc和losstotal_acc += (predicted_label.argmax(1) == label).sum().item()train_loss += loss.item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:3d} | {:5d}/{:5d} batches ''| accuracy {:8.3f} | loss {:8.5f}'.format(epoch, idx, len(dataloader),total_acc/total_count, train_loss/total_count))total_acc, train_loss, total_count = 0, 0, 0start_time = time.time()def evaluate(dataloader):model.eval()  # 切换到评估模式total_acc, total_count = 0, 0with torch.no_grad():for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)loss = criterion(predicted_label, label)  # 计算losstotal_acc += (predicted_label.argmax(1) == label).sum().item()total_count += label.size(0)return total_acc/total_count, total_countfrom torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
EPOCHS = 10  # epoch数量
LR = 5  # 学习速率
BATCH_SIZE = 64  # 训练的batch大小# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
#optimizer = torch.optim.SGD(model.parameters(), lr=LR)
optimizer = torch.optim.Adam(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None# 准备数据集
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)split_train_, split_valid_ = random_split(train_dataset,[int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)# 训练循环
for epoch in range(1, EPOCHS + 1):epoch_start_time = time.time()train(train_dataloader)val_acc, val_loss = evaluate(valid_dataloader)# 更新学习率的策略lr = optimizer.state_dict()['param_groups'][0]['lr']if total_accu is not None and total_accu > val_acc:scheduler.step()else:total_accu = val_accprint('-' * 69)print('| end of epoch {:3d} | time: {:4.2f}s | ''valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))print('-' * 69)test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text))output = model(text, torch.tensor([0]))return output.argmax(1).item()# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"model = model.to("cpu")print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

 效果略差于SGD优化器

9.1.2调参:

 效果较SGD优化器提升1个百分点 

 9.1.2使用RMSprop优化器:

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warningswarnings.filterwarnings("ignore")  # 忽略警告信息# win10系统
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)import pandas as pd# 加载自定义中文数据集
train_data = pd.read_csv('D:/train.csv', sep='\t', header=None)
train_data.head()# 构建数据集迭代器
def custom_data_iter(texts, labels):for x, y in zip(texts, labels):yield x, ytrain_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
import jieba# 中文分词方法
tokenizer = jieba.lcutdef yield_tokens(data_iter):for text,_ in data_iter:yield tokenizer(text)vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])print(vocab(['我', '想', '看', '书', '和', '你', '一起', '看', '电影', '的', '新款', '视频']))label_name = list(set(train_data[1].values[:]))
print(label_name)text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)print(text_pipeline('我想看新闻或者上网站看最新的游戏视频'))
print(label_pipeline('Video-Play'))from torch.utils.data import DataLoaderdef collate_batch(batch):label_list, text_list, offsets = [], [], [0]for (_text, _label) in batch:# 标签列表label_list.append(label_pipeline(_label))# 文本列表processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)text_list.append(processed_text)# 偏移量,即词汇的起始位置offsets.append(processed_text.size(0))label_list = torch.tensor(label_list, dtype=torch.int64)text_list = torch.cat(text_list)offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)  # 累计偏移量dim中维度元素的累计和return text_list.to(device), label_list.to(device), offsets.to(device)# 数据加载器,调用示例
dataloader = DataLoader(train_iter,batch_size=8,shuffle=False,collate_fn=collate_batch)from torch import nnclass TextClassificationModel(nn.Module):def __init__(self, vocab_size, embed_dim, num_class):super(TextClassificationModel, self).__init__()self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)self.fc = nn.Linear(embed_dim, num_class)self.init_weights()def init_weights(self):initrange = 0.5self.embedding.weight.data.uniform_(-initrange, initrange)self.fc.weight.data.uniform_(-initrange, initrange)self.fc.bias.data.zero_()def forward(self, text, offsets):embedded = self.embedding(text, offsets)return self.fc(embedded)
num_class = len(label_name)
vocab_size = len(vocab)
em_size = 64
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)import timedef train(dataloader):model.train()  # 切换到训练模式total_acc, train_loss, total_count = 0, 0, 0log_interval = 50start_time = time.time()for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)optimizer.zero_grad()  # 梯度归零loss = criterion(predicted_label, label)  # 计算损失loss.backward()  # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)  # 梯度裁剪optimizer.step()  # 优化器更新权重# 记录acc和losstotal_acc += (predicted_label.argmax(1) == label).sum().item()train_loss += loss.item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:3d} | {:5d}/{:5d} batches ''| accuracy {:8.3f} | loss {:8.5f}'.format(epoch, idx, len(dataloader),total_acc/total_count, train_loss/total_count))total_acc, train_loss, total_count = 0, 0, 0start_time = time.time()def evaluate(dataloader):model.eval()  # 切换到评估模式total_acc, total_count = 0, 0with torch.no_grad():for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)loss = criterion(predicted_label, label)  # 计算losstotal_acc += (predicted_label.argmax(1) == label).sum().item()total_count += label.size(0)return total_acc/total_count, total_countfrom torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 参数设置
#EPOCHS = 10  # epoch数量
#LR = 5  # 学习速率
#BATCH_SIZE = 64  # 训练的batch大小
EPOCHS = 10  # epoch数量
LR = 0.001  # 通常Adam的学习率设置为一个较小的值,例如0.001
BATCH_SIZE = 64  # 训练的batch大小
# 设置损失函数、优化器和调度器
criterion = torch.nn.CrossEntropyLoss()
#optimizer = torch.optim.SGD(model.parameters(), lr=LR)
#optimizer = torch.optim.Adam(model.parameters(), lr=LR)
optimizer = torch.optim.RMSprop(model.parameters(), lr=LR)scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None# 准备数据集
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)split_train_, split_valid_ = random_split(train_dataset,[int(len(train_dataset)*0.8), int(len(train_dataset)*0.2)])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,shuffle=True, collate_fn=collate_batch)# 训练循环
for epoch in range(1, EPOCHS + 1):epoch_start_time = time.time()train(train_dataloader)val_acc, val_loss = evaluate(valid_dataloader)# 更新学习率的策略lr = optimizer.state_dict()['param_groups'][0]['lr']if total_accu is not None and total_accu > val_acc:scheduler.step()else:total_accu = val_accprint('-' * 69)print('| end of epoch {:3d} | time: {:4.2f}s | ''valid accuracy {:4.3f} | valid loss {:4.3f} | lr {:4.6f}'.format(epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))print('-' * 69)test_acc, test_loss = evaluate(valid_dataloader)
print('模型的准确率: {:5.4f}'.format(test_acc))def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text))output = model(text, torch.tensor([0]))return output.argmax(1).item()# 示例文本字符串
# ex_text_str = "例句输入——这是一个待预测类别的示例句子"
ex_text_str = "这不仅影响到我们的方案是否可行13号的"model = model.to("cpu")print("该文本的类别是: %s" % label_name[predict(ex_text_str, text_pipeline)])

 最佳训练结果略优于其他两种优化器

9.2使用预训练的词嵌入,如Word2Vec、GloVe或者直接使用预训练的语言模型,如BERT,作为特征提取器

在原始代码中使用预训练的词嵌入或BERT模型,需要在定义模型类TextClassificationModel之前加载嵌入,并相应地修改该类。以下是整个流程的步骤:

  • 加载预训练嵌入:

    • 如果使用Word2Vec或GloVe,加载词嵌入并创建一个嵌入层。
    • 如果使用BERT,加载BERT模型和分词器。
  • 修改模型定义:

    • 对于Word2Vec或GloVe,替换模型中的nn.EmbeddingBag为使用预训练嵌入的层。
    • 对于BERT,定义一个新的模型类,其中包含BERT模型和一个分类层。
  • 修改数据预处理:

    • 对于BERT,使用BERT分词器处理文本。
  • 更新训练和评估函数:

    • 适应BERT模型的输入格式。
  • 修改模型初始化:

    • 使用新的模型定义来创建模型实例。
9.2.1使用预训练的词嵌入

如果要使用预训练的Word2Vec或GloVe词嵌入,需要在模型定义之前加载词嵌入,并替换嵌入层,并将它们设置为模型中nn.Embedding层的初始权重。

 替换选中部分

from torchtext.vocab import GloVe# 加载GloVe词嵌入
embedding_glove = GloVe(name='6B', dim=100)def get_embedding(word):return embedding_glove.vectors[embedding_glove.stoi[word]]# 用预训练的嵌入来替换模型中的初始权重
def create_emb_layer(weights_matrix, non_trainable=False):num_embeddings, embedding_dim = weights_matrix.size()emb_layer = nn.Embedding.from_pretrained(weights_matrix, freeze=non_trainable)return emb_layer# 创建权重矩阵
weights_matrix = torch.zeros((vocab_size, em_size))
for i, word in enumerate(vocab.get_itos()):try:weights_matrix[i] = get_embedding(word)except KeyError:# 对于词汇表中不存在于GloVe的词,随机初始化一个嵌入weights_matrix[i] = torch.randn(em_size)# 重写模型定义以使用预训练的嵌入
class TextClassificationModel(nn.Module):def __init__(self, vocab_size, embed_dim, num_class):super(TextClassificationModel, self).__init__()self.embedding = create_emb_layer(weights_matrix, True)  # 设置为True表示不训练嵌入self.fc = nn.Linear(embed_dim, num_class)def forward(self, text, offsets):embedded = self.embedding(text, offsets)return self.fc(embedded)

 创建模型实例:

# 创建新的模型实例(Word2Vec/GloVe或BERT)
model = TextClassificationModel(vocab_size, em_size, num_class).to(device)
# 或者对于BERT
# model = BertTextClassificationModel(num_class).to(device)

运行展示:

运行后自动下载GloVe嵌入截图

9.2.2 使用BERT预训练模型(同上)
from transformers import BertModel, BertTokenizer# 加载预训练的BERT模型和分词器
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
bert_model = BertModel.from_pretrained('bert-base-chinese')class BertTextClassificationModel(nn.Module):def __init__(self, num_class):super(BertTextClassificationModel, self).__init__()self.bert = bert_modelself.fc = nn.Linear(self.bert.config.hidden_size, num_class)def forward(self, text, offsets):# 因为BERT需要特殊的输入格式,所以您需要在这里调整text的处理方式# 这里仅是一个示例,您需要根据实际情况进行调整inputs = bert_tokenizer(text, return_tensors='pt', padding=True, truncation=True)outputs = self.bert(**inputs)# 使用CLS标记的输出来进行分类cls_output = outputs.last_hidden_state[:, 0, :]return self.fc(cls_output)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/246122.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WPF自定义圆形百分比进度条

先看效果图 1.界面代码 <UserControl x:Class"LensAgingTest.CycleProcessBar1"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:mc"http://schemas.op…

Java研学-代理模式

一 概述 1 分类 静态代理&#xff1a;在程序运行前就已经存在代理类的字节码文件&#xff0c;代理对象和真实对象的关系在运行前就确定了。&#xff08;代理类及对象要自行创建&#xff09;   动态代理&#xff1a;代理类是在程序运行期间由 JVM 通过反射等机制动态的生成的…

朴素贝叶斯分类算法

1.分类算法 分类算法是有监督学习的一个核心问题&#xff0c;他从数据中学习一个分类决策函数或分类模型&#xff0c;对新的输入进行预测&#xff0c;输出变量取有限个离散值。 &#x1f30d;分类算法的内容是要求给定特征&#xff0c;让我们得出类别。 那么如何由指定特征&…

Asp.Net Core 获取应用程序相关目录

在ASP.NET Core中&#xff0c;可以通过以下三种方式获取应用程序所在目录&#xff1a; 1、使用AppContext.BaseDirectory属性&#xff1a; string appDirectory AppContext.BaseDirectory; 例如&#xff1a;D:\后端项目\testCore\test.WebApi\bin\Debug\net6.0\ 2、使用…

Leetcode刷题笔记题解(C++):LCR 153. 二叉树中和为目标值的路径

思路&#xff1a;利用回溯的思想&#xff0c;回溯的退出条件为当前节点为空&#xff0c;是符合路径的判断条件为路径和为目标值且叶子节点包含了&#xff0c;代码如下&#xff1a; /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *…

【C++】入门基础

前言&#xff1a;C是在C的基础之上&#xff0c;容纳进去了面向对象编程思想&#xff0c;并增加了许多有用的库&#xff0c;以及编程范式等。熟悉C语言之后&#xff0c;对C学习有一定的帮助&#xff0c;因此从今天开始们将进入&#xff23;的学习。 &#x1f496; 博主CSDN主页:…

《动手学深度学习(PyTorch版)》笔记4.5

注&#xff1a;书中对代码的讲解并不详细&#xff0c;本文对很多细节做了详细注释。另外&#xff0c;书上的源代码是在Jupyter Notebook上运行的&#xff0c;较为分散&#xff0c;本文将代码集中起来&#xff0c;并加以完善&#xff0c;全部用vscode在python 3.9.18下测试通过。…

ES文档索引、查询、分片、文档评分和分析器技术原理

技术原理 索引文档 索引文档分为单个文档和多个文档。 单个文档 新建单个文档所需要的步骤顺序&#xff1a; 客户端向 Node 1 发送新建、索引或者删除请求。节点使用文档的 _id 确定文档属于分片 0 。请求会被转发到 Node 3&#xff0c;因为分片 0 的主分片目前被分配在 …

微信小程序(十七)自定义组件生命周期(根据状态栏自适配)

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.获取手机状态栏的高度 2.验证attached可以修改数据 3.动态绑定样式数值 源码&#xff1a; myNav.js Component({lifetimes:{//相当于vue的created,因为无法更新数据被打入冷宫created(){},//相当于vue的mount…

【JS基础】事件对象event、环境对象this、事件的高级操作

文章目录 一、事件对象1.1 事件对象是什么&#xff1f;1.2 使用方法 二、环境对象this以及回调函数2.1 它是什么&#xff1f;2.2 演示示例 三、事件的高级操作3.1 事件流3.2 事件捕获3.3 事件冒泡以及阻止冒泡3.4 事件解绑3.5 mouseover和mouseenter事件的区别3.6 事件委托它是…

HTML新手教程

HTML入门 教程&#xff1a;【狂神说Java】HTML5完整教学通俗易懂_哔哩哔哩_bilibili 一.初识HTML HyperTextMarkupLanguage&#xff08;超文本标记语言&#xff09; 超文本包括&#xff1a;文字、图片、音频、视频、动画。 HTML5的优势 世界知名浏览器厂商对HTML5的支持市场的…

解决WinForms跨线程操作控件的问题

解决WinForms跨线程操作控件的问题 介绍 在构建Windows窗体应用程序时&#xff0c;我们通常会遇到需要从非UI线程更新UI元素的场景。由于WinForms控件并不是线程安全的&#xff0c;直接这样做会抛出一个异常&#xff1a;“控件’control name’是从其他线程创建的&#xff0c;…

每日OJ题_算法_二分查找⑦_力扣153. 寻找旋转排序数组中的最小值

目录 力扣153. 寻找旋转排序数组中的最小值 解析代码 力扣153. 寻找旋转排序数组中的最小值 153. 寻找旋转排序数组中的最小值 - 力扣&#xff08;LeetCode&#xff09; 难度 中等 已知一个长度为 n 的数组&#xff0c;预先按照升序排列&#xff0c;经由 1 到 n 次 旋转 后…

node学习过程中的终端命令

冷的哥们手真tm冷&#xff0c;打字都是僵的&#xff0c;屮 目录 一、在学习nodejs过程中用到的终端命令总结 一、在学习nodejs过程中用到的终端命令 node -v nvm install 20.11.0 nvm list nvm list available nvm on nvm -v nvm use 20.11.0 node加要运行的js文件路径 ps&a…

Keycloak - docker 运行 前端集成

Keycloak - docker 运行 & 前端集成 这里的记录主要是跟我们的项目相关的一些本地运行/测试&#xff0c;云端用的 keycloak 版本不一样&#xff0c;不过本地我能找到的最简单的配置是这样的 docker 配置 & 运行 keycloak keycloak 有官方(Red Hat Inc.)的镜像&#…

搭建Redis集群

一 应用场景 为什么需要redis集群&#xff1f; 当主备复制场景&#xff0c;无法满足主机的单点故障时&#xff0c;需要引入集群配置。 一般数据库要处理的读请求远大于写请求 &#xff0c;针对这种情况&#xff0c;我们优化数据库可以采用读写分离的策略。我们可以部 署一台…

数据结构与算法——队列

概述 计算机科学中&#xff0c;queue 是以顺序的方式维护的一组数据集合&#xff0c;在一端添加数据&#xff0c;从另一端移除数据。添加的一端称为尾&#xff0c;移除的一端称为头。 功能 插入offer(value : E) : boolean  取值并移除poll() : E  取值peek() : E  判断…

项目中日历管理学习使用

一些项目中会有日历或日期设置&#xff0c;最基本的会显示工作日&#xff0c;休息日&#xff0c;节假日等等&#xff0c;下面就是基于项目中的日历管理功能&#xff0c;要显示工作日&#xff0c;休息日&#xff0c;节假日 效果图 获取国家法定节假日工具类 public class Holi…

「QT」QString类的详细说明

✨博客主页何曾参静谧的博客📌文章专栏「QT」QT5程序设计📚全部专栏「VS」Visual Studio「C/C++」C/C++程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「

Qt编写手机端视频播放器/推流工具/Onvif工具

一、视频播放器 同时支持多种解码内核&#xff0c;包括qmedia内核&#xff08;Qt4/Qt5/Qt6&#xff09;、ffmpeg内核&#xff08;ffmpeg2/ffmpeg3/ffmpeg4/ffmpeg5/ffmpeg6&#xff09;、vlc内核&#xff08;vlc2/vlc3&#xff09;、mpv内核&#xff08;mpv1/mp2&#xff09;、…