一、需求
通过阿里云启动项目时,使用Vuepress build
编译静态页面时内存需要800MB
,导致内存不够,因此考虑使用swap
方式,置换一些内存资源存放swap
磁盘。
[root@xxx myblog]# npm run docs:dev> myblog@1.0.0 docs:dev
> vuepress dev docswait Extracting site metadata...
tip Apply theme @vuepress/theme-default ...
warning Invalid value for "plugin": expected a String, Function or Object but got Array.
warning An error was encountered in plugin "@vuepress/back-to-top"
tip Apply plugin container (i.e. "vuepress-plugin-container") ...
tip Apply plugin @vuepress/register-components (i.e. "@vuepress/plugin-register-components") ...
tip Apply plugin @vuepress/active-header-links (i.e. "@vuepress/plugin-active-header-links") ...
tip Apply plugin @vuepress/search (i.e. "@vuepress/plugin-search") ...
tip Apply plugin @vuepress/nprogress (i.e. "@vuepress/plugin-nprogress") ...
tip Apply plugin copyright (i.e. "vuepress-plugin-copyright") ...
tip Apply plugin sitemap (i.e. "vuepress-plugin-sitemap") ...
tip Apply plugin baidu-autopush (i.e. "vuepress-plugin-baidu-autopush") ...
tip Apply plugin @vuepress/medium-zoom (i.e. "@vuepress/plugin-medium-zoom") ...
tip Apply plugin img-lazy (i.e. "vuepress-plugin-img-lazy") ...
tip Apply plugin @vssue/vssue (i.e. "@vssue/vuepress-plugin-vssue") ...
tip Apply plugin one-click-copy (i.e. "vuepress-plugin-one-click-copy") ...● Client █████████████████████████ building (68%) 2689/2748 modules 59 activeurl-loader › docs/blogs/interview/image/java/link.pngℹ 「wds」: Project is running at http://0.0.0.0:8080/
ℹ 「wds」: webpack output is served from /
ℹ 「wds」: Content not from webpack is served from /root/project/myblog/docs/.vuepress/public
ℹ 「wds」: 404s will fallback to /index.html
Language does not exist: c++
Language does not exist: c++
Language does not exist: c++
Language does not exist: c++
Killed
swap
分区是Linux
操作系统中的一种虚拟化内存技术,将硬盘空间作为内存使用。由于内存和磁盘的读写性能差异较大,Linux
会在内存充裕时将空闲内存用于缓存磁盘数据,以提高I/O
性能。相对的在内存紧张时Linux
会将这些缓存回收,将脏页回写到磁盘中。而在进程的地址空间中,如heap
,stack
等匿名页,在磁盘上并没有对应的文件,但同样有回收到磁盘上以释放出空闲内存的需求。swap
机制通过在磁盘上开辟专用的swap
分区作为匿名页的backing storage
,满足了这一需求。
在Linux
上可以使用swapon -s
命令查看当前系统上正在使用的交换空间有哪些,以及相关信息:
[root@xxx myblog]# swapon
NAME TYPE SIZE USED PRIO
/etc/swap file 2G 677.9M -2
二、SWAP 创建
Linux
支持两种形式的swap
分区: 使用分区空间swap disk
和使用分区文件swap file
。前者是一个专用于做swap
的块设备,作为裸设备提供给swap
机制操作;后者则是存放在文件系统上的一个特定文件,其实现依赖于不同的文件系统,会有所区别。
分区文件swap file
【1】创建swap
文件
[root@xxx myblog]# fallocate -l 2G /etc/swap #指定文件为2G
【2】设置该文件为swap
文件
[root@xxx myblog]# mkswap /etc/swap
Setting up swapspace version 1, size = 2097148 KiB
no label, UUID=5b9e4232-dad5-4dbd-9805-f2296452e6f8
【3】启动swap
文件
[root@xxx myblog]# swapon /etc/swap
swapon: /etc/swap: insecure permissions 0644, 0600 suggested.
【4】使swap
文件永久生效
vim /etc/fstab
【5】在fstab
末尾添加如下内容
/etc/swap swap swap defaults 0 0
【6】更改swap
配置
vim /etc/sysctl.conf
【7】添加如下内容:值越大表示越倾向于使用swap
空间
vm.swappiness=30
【8】重启生效
init 6
分区空间swap disk
【1】创建分区:并设置为swap
格式
fdisk /dev/sdb
参数 | 说明 |
---|---|
n | 创建分区 |
p | 创建主分区 |
1 | 创建分区1 |
两次回车 | 起始扇区和Last扇区选择默认 |
t | 转换分区格式 |
82 | 转换为swap空间 |
p | 查看已创建的分区结果 |
w | 保存退出 |
【2】格式化为swap 空间 |
mkswap /dev/sdb1
【3】启用swap
swapon /dev/sdb1
【4】编辑配置文件,设为开机自动挂载
vim /etc/fstab
【5】fstab
中添加如下内容:
/dev/sdb1 swap swap defaults 0 0
【6】设置自动启用所有swap
空间
swapon -a
【7】重启验证
init 6
可通过swapon
和swapoff
命令开启或关闭对应的swap
分区。通过cat /proc/swaps
或swapon -s
可以查看使用中的swap
分区的状态。
[root@xxx myblog]# swapon -s
Filename Type Size Used Priority
/etc/swap file 2097148 678772 -2
移除交换(Swap)文件
通过以下命令来移除交换Swap
文件,或者通过命令删除/etc/fstab
中的交换文件
[root@xxx]# sudo swapoff -v /swapfile
三、整Swappiness值
Swappiness
是Linux
内核的一个属性,用于定义交换空间的使用频率。如您所知,RAM
比硬盘驱动器快。因此,每次您需要使用交换时,您都会注意到某些进程和应用程序运行速度会变慢。但是,您可以调整系统以使用比交换更多的RAM
。这有助于提高整体系统性能。通常,默认的swappiness
值为30
。此值越小,将使用的RAM
越多。
要验证swappiness
值,请运行以下命令:
[root@xxxx ~]# cat /proc/sys/vm/swappiness
30
如果想要修改swappiness
的值,可以编辑/etc/sysctl.conf
文件。并添加以下以下内容。
vm.swappiness=20
为了应用更改,则需要重新启动系统。这样Linux
内核将使用更多的RAM
和更少的交换,但是当你的RAM
内存严重满时它仍然会交换。通常,当您的RAM
超过4Gb
时,建议使用此设置。
四、页面回收机制
Linux
触发页面回收有三种情况:
【1】直接回收:alloc_pages()
分配物理页,内存紧缺时,会陷入回收机制,同步触发;
【2】周期性回收:当系统内存触发低水位时,唤醒kswapd
线程,异步回收内存;
【3】slab
收割机制:当内存紧缺时,直接回收,周期性回收,都会调用slab收割机回收,不过这里是内核的内存分配;
kswapd_wait
等待队列: 等待队列用于使进程等待某一事件发生,而无需频繁轮询,进程在等待期间睡眠。在某事件发生时,由内核自动唤醒。
setup_arch()-->paging_init()-->bootmem_init()->zone_sizes_init()-->free_area_init_node()-->free_area_init_core()
kswapd_wait
等待队列在free_area_init_core
中进行初始化,每个内存节点一个。kswapd
内核线程在kswapd_wait
等待队列上等待TASK_INTERRUPTIBLE
事件发生。
static void __paginginit free_area_init_core(struct pglist_data *pgdat,unsigned long node_start_pfn, unsigned long node_end_pfn,unsigned long *zones_size, unsigned long *zholes_size)
{
...init_waitqueue_head(&pgdat->kswapd_wait);init_waitqueue_head(&pgdat->pfmemalloc_wait);pgdat_page_ext_init(pgdat);...
}
kswapd
内核线程: kswapd
内核线程负责在内存不足的情况下进行页面回收,为每NUMA
内存节点创建一个kswap%d
的内核线程。其中kswapd
函数是内核线程kswapd
的入口。
/** 一个pglist_data,对应一个内存节点,是最顶层的内存管理数据结构* 主要包括三部分:* 1.描述zone* 2.描述内存节点的信息;* 3.和页面回收相关;*/
typedef struct pglist_data {int node_id;wait_queue_head_t kswapd_wait;struct task_struct *kswapd; /* Protected bymem_hotplug_begin/end() */int kswapd_order;enum zone_type kswapd_highest_zoneidx;struct lruvec __lruvec; ///lru链表向量(包括所有,5种lru链表)} pg_data_t;
wakeup_kswapd
唤醒kswaped
内核线程: 分配内存路径上的唤醒函数wakeup_kswapd
把kswapd_order和kswapd_highest_zoneidx
作为参数传递给kswaped
内核线程;
alloc_page()->__alloc_pages_nodemask()->__alloc_pages_slowpth()->wake_all_kswapds()->wakeup_kswapd()void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,enum zone_type highest_zoneidx)
{pg_data_t *pgdat;enum zone_type curr_idx;if (!managed_zone(zone))return;if (!cpuset_zone_allowed(zone, gfp_flags))return;pgdat = zone->zone_pgdat;///准备本内存节点的kswapd_order和kswapd_highest_zoneidxcurr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);if (READ_ONCE(pgdat->kswapd_order) < order)WRITE_ONCE(pgdat->kswapd_order, order);if (!waitqueue_active(&pgdat->kswapd_wait))return;/* Hopeless node, leave it to direct reclaim if possible */if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||(pgdat_balanced(pgdat, order, highest_zoneidx) &&!pgdat_watermark_boosted(pgdat, highest_zoneidx))) {/** There may be plenty of free memory available, but it's too* fragmented for high-order allocations. Wake up kcompactd* and rely on compaction_suitable() to determine if it's* needed. If it fails, it will defer subsequent attempts to* ratelimit its work.*/if (!(gfp_flags & __GFP_DIRECT_RECLAIM))wakeup_kcompactd(pgdat, order, highest_zoneidx);return;}trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,gfp_flags);///唤醒kswapd_wait队列wake_up_interruptible(&pgdat->kswapd_wait);
}
回收函数kswapd
static int kswapd(void *p)
{...///PF_MEMALLOC允许使用系统预留内存,即不考虑水位tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;for ( ; ; ) {bool ret;///回收页面数量,2的order次幂alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);///classzone_idx内核线程扫描和回收的最高zonehighest_zoneidx = kswapd_highest_zoneidx(pgdat,highest_zoneidx);kswapd_try_sleep:///睡眠,等待wakeup_kswapd唤醒kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,highest_zoneidx);
...reclaim_order = balance_pgdat(pgdat, alloc_order,highest_zoneidx);if (reclaim_order < alloc_order)goto kswapd_try_sleep;}tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);return 0;
}
kswapd
内核线程扫描过程: kswapd()->balance_pgdat()
/****************************************************************************** 回收页面的主函数:** highmem->normal->dma, 从高端往低端方向,查找处于不平衡状态,* 即free_pages <= high_wmark_pagesend_zone的zone* * ****************************************************************************/
static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
{///用于内存碎片化unsigned long nr_boost_reclaim;
...nr_boost_reclaim = 0;for (i = 0; i <= highest_zoneidx; i++) {zone = pgdat->node_zones + i;if (!managed_zone(zone))continue;nr_boost_reclaim += zone->watermark_boost;zone_boosts[i] = zone->watermark_boost;}boosted = nr_boost_reclaim;restart:sc.priority = DEF_PRIORITY;do {...///检查这个节点中是否有合格的zone,其水位高于高水位且能分配2的sc.order次幂个连续的物理页面balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);///若所有zone都不合格,关闭nr_boost_reclaim,重新检查一次if (!balanced && nr_boost_reclaim) {nr_boost_reclaim = 0;goto restart;}//若符合条件,不需要回收,直接跳出if (!nr_boost_reclaim && balanced)goto out;...///老化匿名页面的活跃链表age_active_anon(pgdat, &sc);...///真正扫描和页回收函数,扫描的参数和结果存放在struct scan_control中,///返回true表明回收了所需要的页面,不需要再提高扫描优先级if (kswapd_shrink_node(pgdat, &sc))raise_priority = false;...///加大扫描粒度if (raise_priority || !nr_reclaimed)sc.priority--;} while (sc.priority >= 1);...out:/* If reclaim was boosted, account for the reclaim done in this pass *////若设置了nr_boost_reclaim,唤醒kcompacted线程if (boosted) {...wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);}...return sc.order;
}
对活跃链表中页面的老化:kswapd()->balance_pgdat()->age_active_anon()
///老化匿名页面的活跃链表
static void age_active_anon(struct pglist_data *pgdat,struct scan_control *sc)
{struct mem_cgroup *memcg;struct lruvec *lruvec;if (!total_swap_pages)return;lruvec = mem_cgroup_lruvec(NULL, pgdat);if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))return;memcg = mem_cgroup_iter(NULL, NULL, NULL);do {lruvec = mem_cgroup_lruvec(memcg, pgdat);shrink_active_list(SWAP_CLUSTER_MAX, lruvec,sc, LRU_ACTIVE_ANON);memcg = mem_cgroup_iter(NULL, memcg, NULL);} while (memcg);
}
执行回收:kswapd()->balance_pgdat()->kswapd_shrink_node()->shrink_node()->shrink_node_memcgs()
static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
{struct mem_cgroup *target_memcg = sc->target_mem_cgroup;struct mem_cgroup *memcg;memcg = mem_cgroup_iter(target_memcg, NULL, NULL);do {///获取LRU链表的集合struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);unsigned long reclaimed;unsigned long scanned;/** This loop can become CPU-bound when target memcgs* aren't eligible for reclaim - either because they* don't have any reclaimable pages, or because their* memory is explicitly protected. Avoid soft lockups.*/cond_resched();mem_cgroup_calculate_protection(target_memcg, memcg);if (mem_cgroup_below_min(memcg)) {/** Hard protection.* If there is no reclaimable memory, OOM.*/continue;} else if (mem_cgroup_below_low(memcg)) {/** Soft protection.* Respect the protection only as long as* there is an unprotected supply* of reclaimable memory from other cgroups.*/if (!sc->memcg_low_reclaim) {sc->memcg_low_skipped = 1;continue;}memcg_memory_event(memcg, MEMCG_LOW);}reclaimed = sc->nr_reclaimed;scanned = sc->nr_scanned;///扫描回收lru链表shrink_lruvec(lruvec, sc);///扫描回收slab链表shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,sc->priority);/* Record the group's reclaim efficiency */vmpressure(sc->gfp_mask, memcg, false,sc->nr_scanned - scanned,sc->nr_reclaimed - reclaimed);} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
}
回收函数shrink_lruvec()
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{unsigned long nr[NR_LRU_LISTS];unsigned long targets[NR_LRU_LISTS];unsigned long nr_to_scan;enum lru_list lru;unsigned long nr_reclaimed = 0;unsigned long nr_to_reclaim = sc->nr_to_reclaim;struct blk_plug plug;bool scan_adjusted;///计算每个链表应该扫描的页面数量,结果放在nr[]get_scan_count(lruvec, sc, nr);///全局回收,优化当内存紧缺时,触发直接回收scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&sc->priority == DEF_PRIORITY);///遍历所有链表,回收页面///主要处理不活跃匿名页面,活跃文件映射页面和不活跃文件映射页面while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||nr[LRU_INACTIVE_FILE]) {unsigned long nr_anon, nr_file, percentage;unsigned long nr_scanned;for_each_evictable_lru(lru) {if (nr[lru]) {nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);nr[lru] -= nr_to_scan;//扫描链表,回收页面,返回成功回收的页面数量nr_reclaimed += shrink_list(lru, nr_to_scan,lruvec, sc);}}cond_resched();///没完成回收任务,或设置了scan_adjusted,继续进行页面扫描if (nr_reclaimed < nr_to_reclaim || scan_adjusted)continue;...scan_adjusted = true;}blk_finish_plug(&plug);sc->nr_reclaimed += nr_reclaimed;///老化活跃链表///如果不活跃链表页面数量太少,从活跃链表迁移一部分页面到不活跃链表if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))shrink_active_list(SWAP_CLUSTER_MAX, lruvec,sc, LRU_ACTIVE_ANON);
}
shrink_lruvec()->shrink_list()
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,struct lruvec *lruvec, struct scan_control *sc){if (is_active_lru(lru)) {///扫描活跃的文件映射链表if (sc->may_deactivate & (1 << is_file_lru(lru)))shrink_active_list(nr_to_scan, lruvec, sc, lru);elsesc->skipped_deactivate = 1;return 0;}///扫描不活跃链表return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);}
扫描活跃链表函数shrink_active_list()
实现:
/************************************************************************************** func:扫描活跃链表,包括匿名页或文件映射页面,* 把最近没访问的页面,从活跃链表尾部移到不活跃链表头部* nr_to_scan: 待扫描页面的数量* lruvec:LRU链表集合* sc:页面扫描控制参数
* lru: 待扫描的LRU链表类型
*************************************************************************************/
static void shrink_active_list(unsigned long nr_to_scan,struct lruvec *lruvec,struct scan_control *sc,enum lru_list lru)
{unsigned long nr_taken;unsigned long nr_scanned;unsigned long vm_flags;///定义三个临时链表LIST_HEAD(l_hold); /* The pages which were snipped off */LIST_HEAD(l_active);LIST_HEAD(l_inactive);struct page *page;unsigned nr_deactivate, nr_activate;unsigned nr_rotated = 0;///判断是否为文件映射链表int file = is_file_lru(lru);///获取内存节点struct pglist_data *pgdat = lruvec_pgdat(lruvec);lru_add_drain();spin_lock_irq(&lruvec->lru_lock);///将页面批量迁移到临时链表l_hold中nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,&nr_scanned, sc, lru);///增加内存节点NR_ISOLATED_ANON计数__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);if (!cgroup_reclaim(sc))__count_vm_events(PGREFILL, nr_scanned);__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);spin_unlock_irq(&lruvec->lru_lock);///扫描临时链表l_hold,有些页面放到不活跃链表,有些会放回到活跃链表while (!list_empty(&l_hold)) {cond_resched();page = lru_to_page(&l_hold);list_del(&page->lru);///如果不能回收,放入不能回收链表if (unlikely(!page_evictable(page))) {putback_lru_page(page);continue;}if (unlikely(buffer_heads_over_limit)) {if (page_has_private(page) && trylock_page(page)) {if (page_has_private(page))try_to_release_page(page, 0);unlock_page(page);}}///page_referenced()返回该页面最近访问,应用pte个数,若返回0,表示最近没访问if (page_referenced(page, 0, sc->target_mem_cgroup,&vm_flags)) {/** Identify referenced, file-backed active pages and* give them one more trip around the active list. So* that executable code get better chances to stay in* memory under moderate memory pressure. Anon pages* are not likely to be evicted by use-once streaming* IO, plus JVM can create lots of anon VM_EXEC pages,* so we ignore them here.*/if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {nr_rotated += thp_nr_pages(page);///放回活跃链表list_add(&page->lru, &l_active); continue;}}ClearPageActive(page); /* we are de-activating */SetPageWorkingset(page);///加入不活跃链表list_add(&page->lru, &l_inactive);}/** Move pages back to the lru list.*/spin_lock_irq(&lruvec->lru_lock);///将l_active,l_inactive分别加入到相应的链表nr_activate = move_pages_to_lru(lruvec, &l_active);nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);/* Keep all free pages in l_active list */list_splice(&l_inactive, &l_active);__count_vm_events(PGDEACTIVATE, nr_deactivate);__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);spin_unlock_irq(&lruvec->lru_lock);mem_cgroup_uncharge_list(&l_active);free_unref_page_list(&l_active);trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,nr_deactivate, nr_rotated, sc->priority, file);
}
扫描不活跃链表shrink_inactive_list()
实现:
///扫描不活跃LRU链表,尝试回收页面,返回已经回收的页面数量
static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,struct scan_control *sc, enum lru_list lru)
{LIST_HEAD(page_list);unsigned long nr_scanned;unsigned int nr_reclaimed = 0;unsigned long nr_taken;struct reclaim_stat stat;bool file = is_file_lru(lru);enum vm_event_item item;struct pglist_data *pgdat = lruvec_pgdat(lruvec);bool stalled = false;while (unlikely(too_many_isolated(pgdat, file, sc))) {if (stalled)return 0;/* wait a bit for the reclaimer. *////太多进程在直接回收页面,睡眠,避免内存抖动msleep(100); stalled = true;/* We are about to die and free our memory. Return now. */if (fatal_signal_pending(current))return SWAP_CLUSTER_MAX;}lru_add_drain();spin_lock_irq(&lruvec->lru_lock);///分离页面到临时页表nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,&nr_scanned, sc, lru);///增加内存节点NR_ISOLATED_ANON计数__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;if (!cgroup_reclaim(sc))__count_vm_events(item, nr_scanned);__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);__count_vm_events(PGSCAN_ANON + file, nr_scanned);spin_unlock_irq(&lruvec->lru_lock);if (nr_taken == 0)return 0;///执行回收页面,返回nr_reclaimed个nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);spin_lock_irq(&lruvec->lru_lock);///page_list链表剩余页面迁回不活跃链表move_pages_to_lru(lruvec, &page_list);///减少NR_ISOLATED_ANON计数__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;if (!cgroup_reclaim(sc))__count_vm_events(item, nr_reclaimed);__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);spin_unlock_irq(&lruvec->lru_lock);lru_note_cost(lruvec, file, stat.nr_pageout);mem_cgroup_uncharge_list(&page_list);free_unref_page_list(&page_list);/** If dirty pages are scanned that are not queued for IO, it* implies that flushers are not doing their job. This can* happen when memory pressure pushes dirty pages to the end of* the LRU before the dirty limits are breached and the dirty* data has expired. It can also happen when the proportion of* dirty pages grows not through writes but through memory* pressure reclaiming all the clean cache. And in some cases,* the flushers simply cannot keep up with the allocation* rate. Nudge the flusher threads in case they are asleep.*/if (stat.nr_unqueued_dirty == nr_taken)wakeup_flusher_threads(WB_REASON_VMSCAN);sc->nr.dirty += stat.nr_dirty;sc->nr.congested += stat.nr_congested;sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;sc->nr.writeback += stat.nr_writeback;sc->nr.immediate += stat.nr_immediate;sc->nr.taken += nr_taken;if (file)sc->nr.file_taken += nr_taken;trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,nr_scanned, nr_reclaimed, &stat, sc->priority, file);return nr_reclaimed;
}