flink-java使用介绍,flink,java,DataStream API,DataSet API,ETL,设置 jobname

1、环境准备

文档:https://nightlies.apache.org/flink/flink-docs-release-1.17/zh/
仓库:https://github.com/apache/flink
下载:https://flink.apache.org/zh/downloads/
下载指定版本:https://archive.apache.org/dist/flink/flink-1.17.1/

ETL:用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。

注意:现在的flink没有bat执行文件,需要自己创建,而网上复制的 bat 文件大都有问题,最好在 Linux 系统跑!!

我下载的是 flink-1.17.1

> java -version
java version "1.8.0_201"
Java(TM) SE Runtime Environment (build 1.8.0_201-b09)
Java HotSpot(TM) 64-Bit Server VM (build 25.201-b09, mixed mode)

java8, jdk-1.8.0_181

start-cluster.bat 文件

::###############################################################################
::  Licensed to the Apache Software Foundation (ASF) under one
::  or more contributor license agreements.  See the NOTICE file
::  distributed with this work for additional information
::  regarding copyright ownership.  The ASF licenses this file
::  to you under the Apache License, Version 2.0 (the
::  "License"); you may not use this file except in compliance
::  with the License.  You may obtain a copy of the License at
::
::      http://www.apache.org/licenses/LICENSE-2.0
::
::  Unless required by applicable law or agreed to in writing, software
::  distributed under the License is distributed on an "AS IS" BASIS,
::  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
::  See the License for the specific language governing permissions and
:: limitations under the License.
::###############################################################################@echo off
setlocal EnableDelayedExpansionSET bin=%~dp0
SET FLINK_HOME=%bin%..
SET FLINK_LIB_DIR=%FLINK_HOME%\lib
SET FLINK_PLUGINS_DIR=%FLINK_HOME%\plugins
SET FLINK_CONF_DIR=%FLINK_HOME%\conf
SET FLINK_LOG_DIR=%FLINK_HOME%\logSET JVM_ARGS=-Xms1024m -Xmx1024mSET FLINK_CLASSPATH=%FLINK_LIB_DIR%\*SET logname_jm=flink-%username%-jobmanager.log
SET logname_tm=flink-%username%-taskmanager.log
SET log_jm=%FLINK_LOG_DIR%\%logname_jm%
SET log_tm=%FLINK_LOG_DIR%\%logname_tm%
SET outname_jm=flink-%username%-jobmanager.out
SET outname_tm=flink-%username%-taskmanager.out
SET out_jm=%FLINK_LOG_DIR%\%outname_jm%
SET out_tm=%FLINK_LOG_DIR%\%outname_tm%SET log_setting_jm=-Dlog.file="%log_jm%" -Dlogback.configurationFile=file:"%FLINK_CONF_DIR%/logback.xml" -Dlog4j.configuration=file:"%FLINK_CONF_DIR%/log4j.properties"
SET log_setting_tm=-Dlog.file="%log_tm%" -Dlogback.configurationFile=file:"%FLINK_CONF_DIR%/logback.xml" -Dlog4j.configuration=file:"%FLINK_CONF_DIR%/log4j.properties":: Log rotation (quick and dirty)
CD "%FLINK_LOG_DIR%"
for /l %%x in (5, -1, 1) do ( 
SET /A y = %%x+1 
RENAME "%logname_jm%.%%x" "%logname_jm%.!y!" 2> nul
RENAME "%logname_tm%.%%x" "%logname_tm%.!y!" 2> nul
RENAME "%outname_jm%.%%x" "%outname_jm%.!y!"  2> nul
RENAME "%outname_tm%.%%x" "%outname_tm%.!y!"  2> nul
)
RENAME "%logname_jm%" "%logname_jm%.0"  2> nul
RENAME "%logname_tm%" "%logname_tm%.0"  2> nul
RENAME "%outname_jm%" "%outname_jm%.0"  2> nul
RENAME "%outname_tm%" "%outname_tm%.0"  2> nul
DEL "%logname_jm%.6"  2> nul
DEL "%logname_tm%.6"  2> nul
DEL "%outname_jm%.6"  2> nul
DEL "%outname_tm%.6"  2> nulfor %%X in (java.exe) do (set FOUND=%%~$PATH:X)
if not defined FOUND (echo java.exe was not found in PATH variablegoto :eof
)echo Starting a local cluster with one JobManager process and one TaskManager process.echo You can terminate the processes via CTRL-C in the spawned shell windows.echo Web interface by default on http://localhost:8081/.start /b java %JVM_ARGS% %log_setting_jm% -cp "%FLINK_CLASSPATH%"; org.apache.flink.runtime.entrypoint.StandaloneSessionClusterEntrypoint --configDir "%FLINK_CONF_DIR%" > "%out_jm%" 2>&1
start /b java %JVM_ARGS% %log_setting_tm% -cp "%FLINK_CLASSPATH%"; org.apache.flink.runtime.taskexecutor.TaskManagerRunner --configDir "%FLINK_CONF_DIR%" > "%out_tm%" 2>&1endlocal

flink.bat文件

::###############################################################################
::  Licensed to the Apache Software Foundation (ASF) under one
::  or more contributor license agreements.  See the NOTICE file
::  distributed with this work for additional information
::  regarding copyright ownership.  The ASF licenses this file
::  to you under the Apache License, Version 2.0 (the
::  "License"); you may not use this file except in compliance
::  with the License.  You may obtain a copy of the License at
::
::      http://www.apache.org/licenses/LICENSE-2.0
::
::  Unless required by applicable law or agreed to in writing, software
::  distributed under the License is distributed on an "AS IS" BASIS,
::  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
::  See the License for the specific language governing permissions and
:: limitations under the License.
::###############################################################################@echo off
setlocalSET bin=%~dp0
SET FLINK_HOME=%bin%..
SET FLINK_LIB_DIR=%FLINK_HOME%\lib
SET FLINK_PLUGINS_DIR=%FLINK_HOME%\pluginsSET JVM_ARGS=-Xmx512mSET FLINK_JM_CLASSPATH=%FLINK_LIB_DIR%\*java %JVM_ARGS% -cp "%FLINK_JM_CLASSPATH%"; org.apache.flink.client.cli.CliFrontend %*endlocal

查看信息

> flink.bat -h./flink <ACTION> [OPTIONS] [ARGUMENTS]The following actions are available:Action "run" compiles and runs a program.......

2、WordCount 示例

安装 IntelliJ 编辑器,IntelliJ IDEA 2023.3.2

并安装 maven

2.1、DatStream API 实现批处理

创建项目 New Project --> Maven Archetype

在这里插入图片描述

Catalog参数是Archetype的存储的地方,可以理解为大致的分类,此处我选择Maven Central,点击后面的Manage catalogs可以知道Maven Central是要从线上下载,因此需要等一会。

Archetype参数是Maven Project Template,可以帮你快速初始化项目结构,等到catalog下载好之后,在这里输入 flink 来检索,然后选择org.apache.flink:flink-quickstart-java

Version为模板的版本号,它同时也是 flink 包的版本号。

然后点击Create创建之。

在这里插入图片描述

我们发现pom.xml文件里面已经添加好了很多依赖,这就是使用 Maven 模板的好处。

除此之外,我们还可以使用 mvn命令来开始创建 flink应用,参考地址,

mvn archetype:generate -DarchetypeGroupId=org.apache.flink -DarchetypeArtifactId=flink-quickstart-java -DarchetypeVersion=1.17.1

可以发现,跟我们在 IntelliJ 中创建的参数是一样的。

它默认提供的DEMO是流式的执行环境,即 Streaming。

注意,从Flink 1.12开始,官方推荐直接使用 DataStream API 来处理流和批,然后在提交任务时通过将执行模式设置为 BATCH 来进行批处理。比如bin/flink run -Dexecution.runtime-mode=BATCH WordCount.jar,这样的好处是官方只需要维护一套 API 即可。

所以,我们可以在官方给的DEMO中来实现对 txt 内容的处理。

在项目根目录下创建文件input/wordcount.txt

hello flink
hello java
hello scala

编辑DataStreamJob这个类

package org.example;import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;/*** Skeleton for a Flink DataStream Job.** <p>For a tutorial how to write a Flink application, check the* tutorials and examples on the <a href="https://flink.apache.org">Flink Website</a>.** <p>To package your application into a JAR file for execution, run* 'mvn clean package' on the command line.** <p>If you change the name of the main class (with the public static void main(String[] args))* method, change the respective entry in the POM.xml file (simply search for 'mainClass').*/
public class DataStreamJob {public static void main(String[] args) throws Exception {// 使用 DataStream API// 创建执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 读取数据// 相对路径相对的是工程跟路径// D:\dev\java-intellij\word_count_5\input\wordcount.txt// /mnt/d/dev/java-intellij/word_count_5/input/wordcount.txtDataStreamSource<String> stringDataStreamSource = env.readTextFile("D:\dev\java-intellij\word_count_5\input\wordcount.txt");// 按行切分,转换成元组(word, 1)// 如果参数是接口,可以直接使用匿名类的对象,即直接实例化此接口 new InterfaceA() {}// alt+enter 实现接口方法SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = stringDataStreamSource.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {@Overridepublic void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception {String[] words = s.split(" ");for (String word : words) {//转换为 (word, 1)Tuple2<String, Integer> stringIntegerTuple2 = Tuple2.of(word, 1);// 使用collector向下游发送数据collector.collect(stringIntegerTuple2);}}});// 按照单词分组wordAndOne.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {@Overridepublic String getKey(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {return stringIntegerTuple2.f0;// 按照二元组的第一个位置聚合}}).sum(1) // 按照二元组的第二个位置求和.print(); // 输出env.execute();}
}

注意,wordcount.txt的路径要正确,第一个是在编辑器中运行此程序的时候要能找到这个文件;第二个是在打成 jar 包的时候,此txt文件是不会包含在内的,那么发送到flink服务器去运行的时候怎么去找到这个文件呢,我的flink也是在windows本地启动的,所以我这里填绝对路径就没问题。

此时点击main方法运行会报错,提示类找不到,我们来到 pom.xml 中,就会发现

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java</artifactId><version>${flink.version}</version><scope>provided</scope>
</dependency>
<dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients</artifactId><version>${flink.version}</version><scope>provided</scope>
</dependency>

其中<scope>provided</scope>的意思是,在编译和运行的时候并不会将此依赖编译进去,自然在运行的时候是找不到此依赖的。那么为什么要这么做呢,这是因为在某些情况下,此项目B会被打包成 jar 然后被程序A加载进去使用的,如果程序A中已经包含了这些依赖,那么在项目B打包的时候就没必要再把这些依赖编译进去了,这样的 jar 包会小很多,而flink就是这样的使用场景。

那么问题来了,本地该如何运行呢?

Run -> Edit Configurations,在 Build and run右边点击Modify options,勾选中Add dependencies with 'provided' scope to classpath,点击 Apply

在这里插入图片描述

注意,这里 Application 下面的类必须是执行了一次之后才有的。

再来运行 main方法,可以找到打印信息

3> (hello,1)
1> (scala,1)
3> (hello,2)
3> (hello,3)
7> (flink,1)
2> (java,1)

注意看,每一行输出前面都有个编号,可以理解为这是线程编号。并且这里输出了6行,顺序是乱的,是并行处理的,而且统计的结果是逐渐在变化,可见,虽然每个单词都由不同的线程在处理,但是聚合的结果却是正确的,这就是有状态的意思(stateFul),它内部已经维护好了这个结果。

说明程序运行正常,但是乱七八糟的打印太多,于是修改pom.xml删除以下依赖

<dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-slf4j-impl</artifactId><version>${log4j.version}</version><scope>runtime</scope>
</dependency>
<dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-api</artifactId><version>${log4j.version}</version><scope>runtime</scope>
</dependency>
<dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-core</artifactId><version>${log4j.version}</version><scope>runtime</scope>
</dependency>

在修改了pom.xml文件,或者修改了代码,或者有些class提示找不到了,我们都需要刷新一下maven。可以右键pom.xml --> Maven --> Reload Project;或者点开编辑器右边的 maven 按钮,点击刷新按钮。

最终运行结果如下

在这里插入图片描述

其实,这是以流的方式在处理 txt 文件内容,因为我们并没有设置-Dexecution.runtime-mode=BATCH参数。

2.2、DataSet API 实现批处理

为了对比批处理和流处理的效果,再写一个 DataSet API 的例子。

package org.example;import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.FlatMapOperator;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;public class DataSetBatchJob {public static void main(String[] args) throws Exception {// 使用 DataSet API 方式实现的批处理// 创建执行环境ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();// 读取数据// 相对路径相对的是工程跟路径// /mnt/d/dev/java-intellij/word_count_5/input/wordcount.txtDataSource<String> dataSource = env.readTextFile("D:\\dev\\java-intellij\\word_count_5\\input\\wordcount.txt");// 按行切分,转换成元组(word, 1)// 如果参数是接口,可以直接使用匿名类的对象,即直接实例化此接口 new InterfaceA() {}// alt+enter 实现接口方法FlatMapOperator<String, Tuple2<String, Integer>> wordAndOne = dataSource.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {@Overridepublic void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception {String[] words = s.split(" ");for (String word : words) {//转换为 (word, 1)Tuple2<String, Integer> stringIntegerTuple2 = Tuple2.of(word, 1);// 使用collector向下游发送数据collector.collect(stringIntegerTuple2);}}});// 按照单词分组wordAndOne.groupBy(0)// 按照二元组的第一个位置聚合.sum(1)// 按照二元组的第二个位置求和.print();// 输出}
}

成功执行后的打印结果

在这里插入图片描述

批处理是所有的记录执行完之后打印最终结果的。

2.3、处理无界数据流

使用 socket 连接来模拟无界的数据流。

写法跟DataStreamJob一模一样,就是数据源改一下。

package org.example;import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class DataStreamSocketJob {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<String> stringDataStreamSource = env.socketTextStream("127.0.0.1", 7777);SingleOutputStreamOperator<Tuple2<String, Integer>> tuple2SingleOutputStreamOperator = stringDataStreamSource.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {@Overridepublic void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception {String[] words = s.split(" ");for (String word : words) {Tuple2<String, Integer> stringIntegerTuple2 = Tuple2.of(word, 1);collector.collect(stringIntegerTuple2);}}});tuple2SingleOutputStreamOperator.keyBy(new KeySelector<Tuple2<String, Integer>, String>() {@Overridepublic String getKey(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {return stringIntegerTuple2.f0;}}).sum(1).print();env.execute();}
}

在 WSL 启动一个TCP监听服务 nc -l 7777

执行 main 方法。

然后在 nc 这边输入

hello boy
hello girl
hello flink

我们能看到编辑器有输出

在这里插入图片描述

2.4、有界数据和无界数据

结合 2.1,2.2,2.3 的内容,可以发现,

对于有界数据(一般指日志文件),既可以使用 DataSet API批处理,也可以使用DataStream API配合参数-Dexecution.runtime-mode=BATCH来批处理,还可以使用DataStream API不带参数来流处理。

对于无界数据,我们使用DataStream API来流处理。

3、使用Maven打包成 jar

打开 maven, lifecycle ,先 clean ,再 package
打包结果在 target 目录,其中带 origin 的包是不包含任何依赖的,因此不够通用,包也很小;另外一个包是按照pom.xml来打包的。

在这里插入图片描述

为什么两个都是 7KB,那是因为在 pom.xml 中定义了provided

4、提交任务

启动 flink

> start-cluster.batStarting a local cluster with one JobManager process and one TaskManager process.
You can terminate the processes via CTRL-C in the spawned shell windows.
Web interface by default on http://localhost:8081/.

访问:http://localhost:8081/

关闭cmd窗口就可以停止flink

为什么Available Task Slots都是 0 呢?Task Managers 为空?

在这里插入图片描述

使用自带的example测试

> flink.bat run D:\dev\php\magook\trunk\server\flink-1.17.1\examples\batch\WordCount.jarExecuting WordCount example with default input data set.
Use --input to specify file input.
Printing result to stdout. Use --output to specify output path.
Job has been submitted with JobID 241dfa34420ee6e8beb68a86997cd9f1

也可以来到 web 上面手动提交。

任务都会超时报错:NoResourceAvailableException: Could not acquire the minimum required resources

事实证明 TaskManager 启动失败了,也可能是我复制过来的 bat 文件有问题。为什么 Flink 官方不再提供 bat 文件呢?

5、在 WSL 安装 java-1.8.0

看来只能换到 Linux 系统啦。

下载 java-1.8.0_202
https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html#license-lightbox

开始安装

> mkdir /usr/lib/jdk> tar -zxf jdk-8u202-linux-x64.tar.gz -C /usr/lib/jdk> vi /etc/profileexport JAVA_HOME=/usr/lib/jdk/jdk1.8.0_202
export JRE_HOME=${JAVA_HOME}/jre    
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib    
export PATH=${JAVA_HOME}/bin:$PATH> source /etc/profile > java -version
java version "1.8.0_202"
Java(TM) SE Runtime Environment (build 1.8.0_202-b08)
Java HotSpot(TM) 64-Bit Server VM (build 25.202-b08, mixed mode)

运行 Flink

> cd /mnt/d/dev/php/magook/trunk/server/flink-1.17.1> bin/start-cluster.shStarting cluster.
Starting standalonesession daemon on host windows10-jack.
Starting taskexecutor daemon on host windows10-jack.

访问:http://localhost:8081/

在这里插入图片描述

JobManager 将任务分配到 TaskManager 去执行。

TaskManager:执行数据流的task,一个task通过设置并行度,可能会有多个subtask。 每个TaskManager都是作为一个独立的JVM进程运行的。他主要负责在独立的线程执行的operator。其中能执行多少个operator取决于每个taskManager指定的slots数量(默认一个 TaskManager 设置了一个 slot)。Task slot是Flink中最小的资源单位。假如一个taskManager有3个slot,他就会给每个slot分配1/3的内存资源,目前slot不会对cpu进行隔离。同一个taskManager中的slot会共享网络资源和心跳信息。

5.1、命令行提交任务

使用自带的example测试

> bin/flink run /mnt/d/dev/php/magook/trunk/server/flink-1.17.1/examples/batch/WordCount.jarExecuting WordCount example with default input data set.
Use --input to specify file input.
Printing result to stdout. Use --output to specify output path.
Job has been submitted with JobID 1999ddc8ad4d3ba97eb0e07e76692705
Program execution finished
Job with JobID 1999ddc8ad4d3ba97eb0e07e76692705 has finished.
Job Runtime: 1463 ms
Accumulator Results:
- 6687ca7bfce1aae232b5c6988b84ee8e (java.util.ArrayList) [170 elements](a,5)
(action,1)
(after,1)
(against,1)
(all,2)
(and,12)
(arms,1)
(arrows,1)
(awry,1)
(ay,1)
(bare,1)
(be,4)
.
.
.

可见 flink 是启动成功的。

我们现在有了三个类

DataSetBatchJob
DataStreamJob
DataStreamSocketJob

接下来我们要修改一下,将txt文件地址改成/mnt/d/dev/java-intellij/word_count_5/input/wordcount.txt,重新打包。

如果在 pom.xml 中没有指定 mainClass ,或者设置的 mainClass 并不是你要执行的,那么在提交任务的时候就要指定 entryCLass,比如 -c org.example.DataSetBatchJob

在这里插入图片描述

> bin/flink run -c org.example.DataSetBatchJob /mnt/d/dev/java-intellij/word_count_5/target/word_count_5-1.0-SNAPSHOT.jarJob has been submitted with JobID f6b25200fdba6be70dbd595adf57372e
Program execution finished
Job with JobID f6b25200fdba6be70dbd595adf57372e has finished.
Job Runtime: 1380 ms
Accumulator Results:
- 79e0e4dadaeee895df041c1ff01385f8 (java.util.ArrayList) [4 elements](flink,1)
(hello,3)
(java,1)
(scala,1)

命令是阻塞状态,直到任务被执行完毕,可以加上参数 -d 或 --detached,命令立即返回,但是打印信息要去 webUI 查看。

在这里插入图片描述

在这里插入图片描述

5.2、webUI 上提交任务

还是选择这个 jar 包

在这里插入图片描述

可见 entryClass 默认就是 pom.xml 中的设置,当然你还以修改这个参数,此处我们改为DataSetBatchJob,然后点击submit。报错

在这里插入图片描述

重点是下面这句

Caused by: org.apache.flink.api.common.InvalidProgramException: Job was submitted in detached mode. 
Results of job execution, such as accumulators, runtime, etc. are not available. Please make sure 
your program doesn't call an eager execution function [collect, print, printToErr, count]. 

detached 模式:分离的,指的是通过客户端、Java API 或 Restful 等方式提交的任务,是不会等待作业运行结束的。如果代码中带有collect, print, printToErr, count 操作,对于DataSet API,会直接报错,如上;对于DataStream API,是可以运行的,需要去 webUI 中查看打印信息。

blocking 模式:同步阻塞的,指的是提交作业的时候,会等待作业被执行完,返回结果,打印结果,我们可以通过关闭终端或 Ctrl + C 的方式直接关闭正在运行的 flink 作业,比如我们在命令行执行 bin/flink run ...。当然,也可以在命令行下通过指定 --detached 来使用 detached 模式提交,这样命令行是看不到打印结果的。

bin/flink -h

我们来提交DataStreamJob这个类试试。还是这个包,因此不用重新上传,只需要修改一下 entryClass 然后点 submit 即可。

在这里插入图片描述

这次居然没有报错,那么它打印的信息在哪里呢?

任务是已经FINISHED,我们点开任务详情。
在这里插入图片描述
实际上,这一个 Job 包含了三个计算任务,而每个计算任务又可能分配到不同的 TaskManager 上运行(显然此处我们只有一个 TaskManager),所以你并不知道 Print 操作是在哪个 TaskManager 执行的。

显然第三个任务包含了Stdout,点它。

在这里插入图片描述

Stdout中就能看到打印的信息,

在这里插入图片描述
另外,在 Log List中也能找到打印的信息。找到.out结尾的日志文件,比如我的flink-Ubuntu-taskexecutor-1-windows10-jack.out

在这里插入图片描述

很明显这是流式处理。

接下来我们提交一个无界数据流的任务,也就是DataStreamSocketJob这个类,注意 nc 服务要启动。在 nc 上依次输入

hi girl
hi boy
hi lady

查看日志文件

在这里插入图片描述

这种任务会一直处于RUNNING状态,可以点击Cancel Job将其结束,但是 nc 也会被结束。

所以,使用 webUI 来提交任务还是挺局限的,首先它是detached,其次还不能设置命令参数。

重启 flink ,清除任务记录

> bin/stop-cluster.sh 
> bin/start-cluster.sh

依次执行以下命令

> bin/flink run -c org.example.DataSetBatchJob /mnt/d/dev/java-intellij/word_count_5/target/word_count_5-1.0-SNAPSHOT.jar> bin/flink run -c org.example.DataStreamJob /mnt/d/dev/java-intellij/word_count_5/target/word_count_5-1.0-SNAPSHOT.jar> bin/flink run -c org.example.DataStreamJob -Dexecution.runtime-mode=BATCH /mnt/d/dev/java-intellij/word_count_5/target/word_count_5-1.0-SNAPSHOT.jar 

在这里插入图片描述

从 Job Name 这一栏看,-Dexecution.runtime-mode=BATCH是生效的。但是这里还有一个问题,如何指定 Job Name 呢?我们来查看 Flink 的开发配置:https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/deployment/config/

使用参数 -Dpipeline.name='test_DataStream_api_jar' 来设置 Job Name。

bin/flink run -c org.example.DataStreamJob -Dpipeline.name='test_DataStream_api_jar' /mnt/d/dev/java-intellij/word_count_5/target/word_count_5-1.0-SNAPSHOT.jar

在这里插入图片描述

flink run 命令其实也是投递到webui那个接口,因此可以指定IP和端口,比如-m hadoop002:8081

6、运行与部署

部署模式:会话模式(session mode),应用模式(application mode),单作业模式(per-job mode)。

运行模式,standalone模式,k8s模式,yarn模式。

我们在上面启动的就是 standalone 模式,这种模式不会动态的伸缩计算节点,也就是 TaskManager 在集群启动的时候就要指定好,不能自适应增减节点。因此官方将flink和Yarn做了集成,使用 yarn-session.sh 命令就能以Yarn的方式来运行flink,这样Yarn就会根据任务的数量来动态增减TaskManager的数量。

Yarn是Hadoop的组件,因此需要先部署Hadoop环境和HDFS并运行之。

7、Flink API 简介

Flink将数据处理接口抽象成四层:

  • 1、SQL API:SQL语言的学习成本低,能够让数据分析人员和开发人员快速上手,帮助其更加专注业务本身而不受限于复杂的编程接口,可以通过SQL API完成对批计算和流计算的处理;
  • 2、Table API:将内存中 DataStream 和 DataSet 在原有的基础上增加Schema信息,将数据类型统一抽象成表结构,然后通过Table API提供的接口处理对应的数据集;
  • 3、DataStream/DataSet API:主要面向具有开发经验的用户,用户可以根据API处理无界流数据和批量数据;
  • 4、Stateful Stream Processing:是Flink中最底层的开发接口,可以使用接口中操作状态、时间等底层数据,可以实现非常复杂的流式计算逻辑。

我们上面的例子就是第三层的API,显然第一层的 SQL API 是抽象程度最高的,也是兼容性最好的,使用最简单的。

越往下越接近底层,使用的时候需要注意的东西就越多,越麻烦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/247309.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java项目:基于SSM框架实现的企业员工岗前培训管理系统(ssm+B/S架构+源码+数据库+毕业论文)

一、项目简介 本项目是一套ssm821基于ssm框架实现的企业员工岗前培训管理系统&#xff0c;主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者。 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格…

深入解析HTTPS:安全机制全方位剖析

随着互联网的深入发展&#xff0c;网络传输中的数据安全性受到了前所未有的关注。HTTPS&#xff0c;作为HTTP的安全版本&#xff0c;为数据在客户端和服务器之间的传输提供了加密和身份验证&#xff0c;从而确保了数据的机密性、完整性和身份真实性。本文将详细探讨HTTPS背后的…

2023年深圳市节假日人口迁入数据,shp/excel格式,需要自取!

基本信息. 数据名称: 深圳市节假日人口迁入数据 数据格式: Shp、excel 数据时间: 2023年国庆节 数据几何类型: 线 数据坐标系: WGS84 数据来源&#xff1a;网络公开数据 数据字段&#xff1a; 序号字段名称字段说明1a0928迁入人口占迁入深圳市人口的比值&#xff0…

(2)(2.9) Holybro Microhard P900无线电遥测设备

文章目录 前言 1 特点 2 规格 3 包装内包括 前言 Holybro Microhard Radio 集成了 microhard Pico 系列射频模块&#xff0c;能够在强大的拓扑结构中提供高性能无线串行通信&#xff0c;如点对点、点对多点和安全 Mesh&#xff08;P840 不提供 Mesh&#xff09;。 它采用跳…

Unity——八叉树的原理与实现

八叉树原理 八叉树&#xff08;Octree&#xff09;是一种用于在三维空间中进行空间分割的数据结构。它将三维空间递归地划分为八个子空间&#xff0c;每个子空间对应于一个八叉树节点。这种分割方式可以有效地组织和管理场景中的对象&#xff0c;提高检索效率&#xff0c;特别…

python笔记10

1、继承 继承是面向对象编程中的一个重要概念&#xff0c;它允许一个类&#xff08;子类&#xff09;继承另一个类&#xff08;父类&#xff09;的属性和方法。通过继承&#xff0c;子类可以重用父类的代码&#xff0c;并且有机会添加新的属性和方法&#xff0c;或者重写父类的…

Git 教程 | 将本地修改后的文件推送到 Github 指定远程分支上

Git 是一种分布式版本控制系统&#xff0c;用于敏捷高效地处理任何大小的项目。它是由 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的开源版本控制软件。Git 的本地克隆就是一个完整的版本控制存储库&#xff0c;无论脱机还是远程都能轻松工作。开发人员会在本地提交其工…

[嵌入式系统-5]:龙芯1B 开发学习套件 -2- LoongIDE 集成开发环境集成开发环境的安装步骤

目录 一、LoongIDE&#xff08;龙芯开发工具集成环境&#xff09;概述 1.1 概述 二、软件开发环境的安装过程 2.0 注意事项 2.1 步骤1&#xff1a;MingW运行环境 2.2 步骤2&#xff1a;安装LoongIDE 2.3 步骤3&#xff1a;安装MIPS工具链 2.4 配置工具链 2.5 重启电脑…

Bytebase 签约 Aptive,助力北美商住害虫控制服务领导者构建统一数据库操作平台

在数字化快速发展时代&#xff0c;有效的规范数据库管理对企业安全运营至关重要。近日&#xff0c;数据库 DevOps 团队协同管理工具 Bytebase 签约北美商住害虫控制服务的领导者 Aptive Environmental&#xff0c;旨在全面优化 Aptive Environmental 的数据库操作管理&#xff…

天软特色因子看板 (2024.01 第10期)

该因子看板跟踪天软特色因子A04001(当日趋势强度)&#xff0c;该因子为反映股价走势趋势强弱&#xff0c;用以反映股价走势趋势强弱&#xff0c;abs(值)越接近1&#xff0c;趋势 性越强&#xff0c;符号代表涨跌方向。 今日为该因子跟踪第10期&#xff0c;跟踪其在SW801120 (申…

离线生成双语字幕,一键生成中英双语字幕,基于AI大模型,ModelScope

离线生成双语字幕整合包,一键生成中英双语字幕,基于AI大模型 制作双语字幕的方案网上有很多&#xff0c;林林总总&#xff0c;不一而足。制作双语字幕的原理也极其简单&#xff0c;无非就是人声背景音分离、语音转文字、文字翻译&#xff0c;最后就是字幕文件的合并&#xff0c…

服务端开发小记02——Maven

这里写目录标题 Maven简介Maven在Linux下的安装Maven常用命令 Maven简介 Apache Maven Project是一个apache的开源项目&#xff0c;是用于构建和管理Java项目的工具包。 用Maven可以方便地创建项目&#xff0c;基于archetype可以创建多种类型的java项目&#xff1b;Maven仓库…

热门技术问答 | 请 GaussDB 用户查收

近年来&#xff0c;Navicat 与华为云 GaussDB 展开一系列技术合作&#xff0c;为 GaussDB 用户提供面向管理开发工具的生态工具。Navicat 现已完成 GaussDB 主备版&#xff08;单节点、多节点&#xff09;和分布式数据库的多项技术对接。Navicat 通过工具的流畅性和实用性&…

css中常用的水平垂直居中的方法(六种详细布局的方法)

目录 一、背景二、实现方式利用定位margin:auto利用定位margin:负值利用定位transformtable布局flex弹性布局grid网格布局小结 三、总结内联元素居中布局块级元素居中布局 参考文献 一、背景 在开发中经常遇到这个问题&#xff0c;即让某个元素的内容在水平和垂直方向上都居中…

ETCD高可用架构涉及常用功能整理

ETCD高可用架构涉及常用功能整理 1. etcd的高可用系统架构和相关组件1.1 Quorum机制1.2 Raft协议 2. etcd的核心参数2.1 常规配置2.2 特殊优化配置2.2.1 强行拉起新集群 --force-new-cluster2.2.2 兼容磁盘io性能差2.2.3 etcd存储quota 3. etcd常用命令3.1 常用基础命令3.1.1 列…

【C++】wxWidgets编程的程序入口点

在wxWidgets中&#xff0c;程序的入口点通过wxIMPLEMENT_APP宏定义来设置&#xff0c;该宏会扩展为一个实现了main函数或者在Windows上是WinMain函数的代码。wxIMPLEMENT_APP宏与wxDECLARE_APP宏一起使用来设置基于wxWidgets的应用程序的启动代码。 使用wxIMPLEMENT_APP宏通常是…

day31WEB攻防-通用漏洞文件上传js验证mimeuser.ini语言特性

目录 1.JS验证 2.JS验证MIME 3.JS验证.user.ini 4.JS验证.user.ini短标签 &#xff08;ctfshow154&#xff0c;155关&#xff09; 5.JS验证.user.ini短标签过滤 [ ] 6.JS验证.user.ini短标签加过滤文件头 有关文件上传的知识 1.为什么文件上传存在漏洞 上传文件…

2024年数学建模美赛C题(预测 Wordle)——思路、程序总结分享

1: 问题描述与要求 《纽约时报》要求您对本文件中的结果进行分析&#xff0c;以回答几个问题。 问题1&#xff1a;报告结果的数量每天都在变化。开发一个模型来解释这种变化&#xff0c;并使用您的模型为2023年3月1日报告的结果数量创建一个预测区间。这个词的任何属性是否会…

【服务器Midjourney】创建部署Midjourney网站

目录 🌺【前言】 🌺【准备】 🌺【宝塔搭建MJ】 🌼1. 给服务器添加端口 🌼2. 使用Xshell连接服务器 🌼3. 安装docker 🌼4. 安装Midjourney程序 🌼5. 绑定域名+申请SSL证书 🌼6. 更新网站

分布式空间索引了解与扩展

目录 一、空间索引快速理解 &#xff08;一&#xff09;区域编码 &#xff08;二&#xff09;区域编码检索 &#xff08;三&#xff09;Geohash 编码 &#xff08;四&#xff09;RTree及其变体 二、业内方案选取 三、分布式空间索引架构 &#xff08;一&#xff09;PG数…