05. 交换机的基本配置

文章目录

  • 一. 初识交换机
    • 1.1. 交换机的概述
    • 1.2. Ethernet_ll格式
    • 1.3. MAC分类
    • 1.4. 冲突域
    • 1.5. 广播域
    • 1.6. 交换机的原理
    • 1.7. 交换机的3种转发行为
  • 二. 初识ARP
    • 2.1. ARP概述
    • 2.2. ARP报文格式
    • 2.3. ARP的分类
    • 2.4. 免费ARP的作用
  • 三. 实验专题
    • 3.1. 实验1:交换机的基本原理与配置
      • 3.1.1. 实验目的
      • 3.1.2. 实验拓扑图
      • 3.1.3. 实验步骤
        • (1)配置IP地址
        • (2)实验调试
          • ① 查看交换机信息
          • ② 访问测试
          • ③ 查看交换机信息
    • 3.2. 实验2:动态ARP的原理与配置
      • 3.2.1. 实验目的
      • 3.2.2. 实验目的
      • 3.2.3. 实验目的
        • (1)配置PC机的IP地址
        • (2)查看PC机的ARP缓存表
          • ① 查看缓存表
          • ② 测试发送
          • ③ 抓包结果
    • 3.3. 实验3:静态ARP的原理与配置
      • 3.3.1. 实验目的
      • 3.3.2. 实验拓扑图
      • 3.3.3. 实验步骤
        • (1)配置PC机的ip地址
        • (2)界面静态ARP绑定配置
    • 3.4. 实验4:代理ARP的原理与配置
      • 3.4.1. 实验目的
      • 3.4.2. 实验拓扑图
      • 3.4.3. 实验步骤
        • (1)配置PC机的IP地址
        • (2)配置路由器的IP地址
        • (3)代理ARP测试(无配置代理ARP)
        • (4)配置代理ARP
        • (5)代理ARP测试(配置代理ARP)
        • (6)查看路由表接口信息
  • 四. 交换机的基本原理命令汇总

一. 初识交换机

1.1. 交换机的概述

二层交换设备工作在OSI模型的第二层,即数据链路层,它对数据包的转发是建立在Mac(媒体访问控制)地址基础之上的。
二层交换设备不同的接口发送和接收数据独立,各接口属于不同的冲突域,因此有效地隔离了网络中物理层冲突域,使得通过它互联的主机(或网络)之间不必再担心流量大对数据发送冲突的影响。

在网络中传输数据时需要遵循一些标准,以太网协议定义了数据帧在以太网中的传输标准。

  • 了解以太网协议是充分理解数据链路层通信的基础;
  • 以太网交换机是实现数据链路层通信的主要设备;
  • 了解以太网交换机的工作原理也是十分必要的;

1.2. Ethernet_ll格式

格式名称说明
DMAC目的Mac地址,6B,该字段标识帧的接收者
SMAC源 Mac地址,6B,该字段标识帧的发送者
Type协议类型
Data数据字段,46~1500B。标识帧的负载
FCS帧校验序列,4B,是一种为接收者提供判断是否传输错误的方法,如果发现错误则丢弃此帧

1.3. MAC分类

名称说明
单播MAC地址第8位为0,用于标识链路上的一个单一节点
组播MAC地址第8位,为1,用来代表局域网上的一组终端
广播MAC地址全1,用来表示局域网上的所有终端设备

1.4. 冲突域

冲突域是指连接在同一共享介质上的所有节点的集合

1.5. 广播域

广播域是指一个节点发送一个广播报文,其余节点都能够收到的节点的集合

1.6. 交换机的原理

  • 基于源Mac地址学习
  • 基于目的Mac地址转发
  • 收到的是一个广播帧或者未知的广播帧,除源端口以外所有端口转发

1.7. 交换机的3种转发行为

行为方式描述
Flooding(泛洪)交换机把某一个接口接收的数据帧从除源端口以外所有的端口转发出去,是一种点到多点的转发行为。(包含3种情况:收到广播数据帧、收到组播数据帧、收到未知单播数据帧)
Forwarding(转发)交换机从某一个接口收到的数据帧从另一个端口转发出去是一种点到点的行为
Discarding(丢弃)交换机把从某一端口进行的帧直接丢弃

二. 初识ARP

2.1. ARP概述

在局域网中,当主机或其他三层网络设备有数据要发送给另一台主机或三层网络设备时,它需要知道对方的网络层地址(即IP地址)
但是仅有IP地址是不够的,因为IP报文必须封装成帧才能通过物理网络发送。

因此发送方还需要知道接收方的物理地址(即MAC地址),这就需要从一个IP地址到Mac地址的映射。
ARP可以实现将IP地址解析为Mac地址。

主机或三层网络设备上会维护一张ARP表,用于存储IP地址和Mac地址的关系。一般ARP表项包括动态ARP表项静态ARP表项

2.2. ARP报文格式

报文名称描述
Hardware Type硬件地址类型,一般为以太网
Protocal Type三层协议地址类型,一般为IP
Hardware Length & Protocol LengthMac地址和IP地址的长度,单位为字节
Operation Code指定ARP报文的类型,包括ARP Request和ARP Reply
Source Hardware接收者的Mac地址,在ARP报文中,该字段值为0
Destination Protocol Address接收者的IP地址

2.3. ARP的分类

种类描述
动态ARP表项有ARP协议,通过ARP报文自动生成和维护,可以被老化,可以被新的ARP报文更新,可以被静态ARP表项覆盖。动态ARP适用于拓扑结构复杂、通信实时性要求高的网络
静态态ARP是由网络管理员手工建立的IP地址和Mac地址之间固定的映射关系。静态ARP表象不会被老化,不会被动态ARP表象覆盖
免费ARP设备主动使用自己的IP地址作为目的IP地址发送ARP请求,此种方式称为免费ARP

2.4. 免费ARP的作用

用途描述
IP地址冲突检测当设备接口协议状态变为up时,设备主动对外发送免费的ARP报文,正常情况下不会受到ARP应答,如果收到,则表明本网络中存在与自身IP地址重复的地址。如果检测到IP冲突,设备会周期性的广播发送免费ARP应答报文,直到冲突解除。
通告新的Mac地址如:发送方更换了网卡,Mac地址发生了改变。为了能够在动态ARP表象老化前通告网络中其他设备,发送方可以发送一个免费ARP
代理ARP如果ARP请求是从一个网络的主机发送同一个网站,但不同于物理网络上的另一台主机,那么连接这两个网络的设备就可以回答该网ARP请求,这个过程称为代理ARP

三. 实验专题

3.1. 实验1:交换机的基本原理与配置

3.1.1. 实验目的

掌握交换机的基本原理

3.1.2. 实验拓扑图

在这里插入图片描述

3.1.3. 实验步骤

(1)配置IP地址

1)PC1的配置
在【IPV4配置】栏中选中【静态】单选按钮,输入对应的【IP地址】【子网掩码】和【网关】,然后点击应用按钮。PC2、PC3、PC4的配置步骤如图所示:
在这里插入图片描述
2)PC2的配置
在这里插入图片描述
3)PC3的配置
在这里插入图片描述
4)PC4的配置
在这里插入图片描述

(2)实验调试
① 查看交换机信息
#查看交换机的Mac地址表
<Huawei>system-view
[Huawei]undo info-center enable
[Huawei]sysname LSW1
[LSW1]display mac-address #查看mac地址表

如图所示:
在这里插入图片描述
可以看到,交换机的Mac地址表为空,表示交换机设备没有开始转发数据时Mac地址默认是为空的

② 访问测试
#在PC1上访问PC4
PC>ping 192.168.1.4

如图所示:
在这里插入图片描述

③ 查看交换机信息
#查看交换机MAC地址表,命令如下:
[LSW1]display mac-address

如图所示:
在这里插入图片描述
以上输出结果显示了交换器的Mac的地址表

思考: PC访问PC4的数据转化过程是怎样的?

  • PC1封装时没有PC4的Mac地址,要通过ARP知道PC4的Mac地址;
  • PC1封装数据,把它从E0/0/1接口转发给交换机;
  • 交换机收到数据后,查看数据帧,首先学习PC1的Mac地址,然后泛洪数据帧;
  • PC2、PC3收到数据包以后不做处理,PC4是收到数据包后要回应PC1从G1/0/0/1接口转发出去,最后PC1收到数据包

3.2. 实验2:动态ARP的原理与配置

3.2.1. 实验目的

  • 掌握ARP表项内容
  • 掌握ARP动态获取MAC地址的过程

3.2.2. 实验目的

在这里插入图片描述

3.2.3. 实验目的

(1)配置PC机的IP地址

1)配置PC1的地址
在【IPV4配置】栏中选中【静态】单选按钮,输入对应的【IP地址】【子网掩码】和【网关】,然后点击应用按钮。PC1的配置步骤如图所示:
在这里插入图片描述
2)配置PC2的地址
如图所示:
在这里插入图片描述

(2)查看PC机的ARP缓存表
① 查看缓存表
#查看PC1的ARP缓存表,在PC1的命令行界面输入“arp -a”
PC>arp -a
#查看PC2的ARP缓存表,在PC1的命令行界面输入“arp -a”
PC>arp -a

如图所示:
在这里插入图片描述
在这里插入图片描述
ARP的参数信息

参数名描述
Internet Address代表IP地址
Physical Address代表MAC地址
Type代表ARP表项的形式方式
② 测试发送
#PC1访问PC2,并查看PC1的ARP缓存表
PC>ping 10.1.1.2
PC>arp -a

如图所示:
在这里插入图片描述
以上图可以看出PC1学习到了10.1.1.2,这个ip地址对应的mac地址为54-89-98-81-23-EE

③ 抓包结果

在这里插入图片描述
在这里插入图片描述
对刚刚圈出两个抓包数据,双击点击进去查看,如图所示:
在这里插入图片描述
技术要点:
PC1访问PC2时动态学习MAC地址的工作过程是怎样的?

  • PC1访问PC2访问前,首先查看自己的ARP缓存表,若表项为空,则就无法封装数据帧的目的MAC地址字段;
  • PC1以广播报文的形式发送ARP request报文请求PC2的MAC地址,ARP请求包中会还会携带PC1的ip地址以及MAC地址;
  • PC2收到PC1发送ARP request报文后,会先把PC1的ip地址以及mac地址对应关系添加到自己的ARP缓存表中;
  • 交换机收到了单播报文后,将此报文转发给PC1;
  • PC1收到报文后,将得知PC2的mac地址以及ip地址的对应关系并假如自己的缓存表中

3.3. 实验3:静态ARP的原理与配置

3.3.1. 实验目的

  • 掌握静态ARP的配置方法
  • 理解静态ARP的工作原理

3.3.2. 实验拓扑图

在这里插入图片描述

3.3.3. 实验步骤

(1)配置PC机的ip地址

1)PC1机的ip配置
在这里插入图片描述

2)PC2机的ip配置
在这里插入图片描述

(2)界面静态ARP绑定配置

1)PC1机静态ARP绑定配置

PC>arp -s 10.1.1.2 54-89-98-2E-6C-F1 #配置静态ARP绑定
PC>arp -a .
PC>arp -a 

如图所示:
在这里插入图片描述
2)PC2机静态ARP绑定配置

PC>arp -s 10.1.1.1 54-89-98-F1-65-7C
PC>arp -a

如图所示:
在这里插入图片描述

3.4. 实验4:代理ARP的原理与配置

3.4.1. 实验目的

  • 掌握代理ARP的配置方法
  • 理解代理ARP的工作原理

3.4.2. 实验拓扑图

在这里插入图片描述

3.4.3. 实验步骤

(1)配置PC机的IP地址

1)PC1机的ip地址配置
在这里插入图片描述

2)PC2机的ip地址配置
在这里插入图片描述

(2)配置路由器的IP地址

<AR1>system-view
[AR1]undo info-center enable
[AR1]sysname AR1
[AR1]interface g0/0/0
[AR1-GigabitEthernet0/0/0]ip address 10.1.1.1 24
[AR1-GigabitEthernet0/0/0]interface g0/0/1
[AR1-GigabitEthernet0/0/1]ip address 10.1.2.1 24
[AR1-GigabitEthernet0/0/1]

如图所示:
在这里插入图片描述

(3)代理ARP测试(无配置代理ARP)
#这是没有配置代理ARP测试的结果
PC>ping 10.1.2.2

如图所示:
在这里插入图片描述
以上说明,没有配置代理ARP前,PC1是无法访问PC2的尽管IP分别是10.1.1.2/16、10.1.2.2/16,且属于10.1.0.0/16网段,但是对于相同网段设备互访会使用二层通信。
此时PC会发送ARP请求报文(广播包),请求PC2的Mac地址,而路由设备会隔离广播,不会将这个ARP报文转发给PC2。

因此PC1学习不到PC2的Mac地址,无法封装数据帧,导致无法互访。

(4)配置代理ARP
[AR1-GigabitEthernet0/0/0]quit
[AR1]interface g0/0/0
[AR1-GigabitEthernet0/0/0]arp-proxy enable #在g0/0/0接口开启代理ARP功能
[AR1-GigabitEthernet0/0/0]interface g0/0/1
[AR1-GigabitEthernet0/0/1]arp-proxy enable #在g0/0/1接口开启代理ARP功能

如图所示:
在这里插入图片描述

(5)代理ARP测试(配置代理ARP)
#PC1访问PC2
PC>ping 10.1.2.2
PC>arp -a

如图所示:
在这里插入图片描述
通过以上输出可以看到,PC1可以访问PC2,并且学习到了PCR的IP地址和Mac地址的对应关系。

接下来,了解一下代理ARP的工作过程

  • PC1访问10.1.2.2,由于与本身配置的IP地址10.1.1.2属于相同网段,因此PC1会发送ARP请求报文到PC2的Mac地址;
  • 由于路由器会隔离广播包,因此在没有配置代理ARP前,两台设备是无法互访的;
  • 在路由器上配置了代理ARP后,路由器收到ARP请求报文后,路由器会查找路由表,由于PC2与路由直连,因此路由器存在PC2的直连路由表象,因此路由器使用自己的Mac的地址给PC1发送ARP应答报文;
  • PC1收到了路由器的ARP应答报文,将路由器的。G0/0/0/0接口的Mac地址与PC2的IP地址进行ARP映射,下次使用路由器的Mac地址进行数据转发,此时路由器相当于PC2的代理
(6)查看路由表接口信息
[AR1]display interface g0/0/0

如图所示:
在这里插入图片描述
可以发现路由器的G0/0/0接口的Mac地址为5489-9847-309b 与以PC1上学习到的10.1.2.2的Mac地址一致验证了上面的说法。

可以将这种代理ARP堪作一种欺骗,ARP路由器欺骗了PC1,它传递的PC1的信息是PC2的Mac地址为路由器接口的Mac地址。

只不过这种欺骗是一种善意欺骗,可以让IP地址属于同一网站却不属于同一物理网络的主机间相互通信。

四. 交换机的基本原理命令汇总

命令作用
display mac-address查看交换机Mac的地址表
mac-address aging-time修改Mac地址表的老化时间
arp -a查看PC机的ARP缓存表
arp -s在PC机上绑定IP地址和Mac地址
arp proxy enable在路由器上开启ARP代理功能

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/248288.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实战教程:如何用Spring Boot和MySQL存储共享单车数据

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

线性代数---------学习总结

线性代数之行列式 行列式的几条重要的性质 1.某两行某两列交换位置之后&#xff0c;值变号 2.行列式转置&#xff0c;值不变 3.范德蒙德行列式&#xff0c;用不同行的公比做一系列的累乘运算 4.把某一行的行列式加到另一行上&#xff0c;利用他们之间的倍数关系&#xff0…

【开源】JAVA+Vue.js实现大学兼职教师管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容三、界面展示3.1 登录注册3.2 学生教师管理3.3 课程管理模块3.4 授课管理模块3.5 课程考勤模块3.6 课程评价模块3.7 课程成绩模块3.8 可视化图表 四、免责说明 一、摘要 1.1 项目介绍 大学兼职教师管理系统&#xff0c;旨…

Vue3中的ref和shallowRef、reactive和shallowReactive

一&#xff1a;ref、reactive简介 ref和reactive是Vue3中定义响应式数据的一种方式。ref通常用来定义基础类型数据。reactive通常用来定义复杂类型数据。 二、shallowRef、shallowReactive简介 shallowRef和shallowReactive是Vue3中定义浅层次响应式数据的方式 三、Api使用对比…

2023量子科技十大用例 | 光子盒年度系列

随着量子科技的不断突破&#xff0c;量子计算、量子通信、量子测量等应用场景逐渐向纵深拓展&#xff0c;量子产业呈现出较好的发展势头。 量子计算的发展比以往任何时候都更加迅速&#xff0c;这提醒我们&#xff0c;这项看似‘高冷’的前沿科技&#xff0c;已悄然应用于不少领…

存储技术架构演进

一. 演进过程 存储技术架构的演进主要是从集中式到分布式的一种呈现&#xff0c;集中式存储模式凭借其在稳定性和可靠性方面的优势成为许多业务数据库的数据存储首选&#xff0c;顾名思义&#xff0c;集中式存储主要体现在集中性&#xff0c;一套集中式管理的存储系统&#xff…

【webrtc】‘ninja.exe‘ 不是内部或外部命令,也不是可运行的程序及vs2019 重新构建m98

werbtc 就是用ninja.exe 来构建找到了自己以前构建的webrtc 原版 m98 【m98 】webrtc ninja 构建 、example、tests 及OWT- P2P 项目P2PMFC-E2E-m98G:\CDN\rtcCli\webrtc-checkout\src找到了自己的deptools的路径 deptools里确实没有ninja.exe D:\SOFT\depot_tools\third_party…

RabbitMQ 笔记二

1.Spring 整合RabbitMQ 生产者消费者 创建生产者工程添加依赖配置整合编写代码发送消息 创建消费者工程添加依赖配置整合编写消息监听器 2.创建工程RabbitMQ Producers spring-rabbitmq-producers <?xml version"1.0" encoding"UTF-8"?> <pr…

网络安全知识和华为防火墙

网络安全 网络空间安全 ---Cyberspace 2003年美国提出的网络空间概念 ---一个由信息基础设施组成的互相依赖的网络。 我国官方文件定义&#xff1a;网络空间为继海、陆、空、天以外的第五大人类互动领域。 通信保密阶段 --- 计算机安全阶段 --- 信息系统安全 --- 网络空间安…

07. STP的基本配置

文章目录 一. 初识STP1.1. STP概述1.2. STP的出现1.3. STP的作用1.4. STP的专业术语1.5. BPDU的报文格式1.6. STP的选择原则&#xff08;1&#xff09;选择根桥网桥原则&#xff08;2&#xff09;选择根端口原则 1.7. 端口状态1.8. STP报文类型1.9. STP的收敛时间 二. 实验专题…

携程开源 基于真实请求与数据的流量回放测试平台、自动化接口测试平台AREX

携程开源 基于真实请求与数据的流量回放测试平台、自动化接口测试平台AREX 官网文档 基于真实请求与数据的流量回放测试平台、自动化接口测试平台AREX 目前已跑通&#xff0c;通过冒烟测试&#xff0c;这篇文章稍稍水一下&#xff0c;主要讲下部署过程里踩的坑&#xff0c;因为…

Linux操作系统运维-用户与用户组管理

Linux操作系统运维-用户与用户组管理 用户种类与标识查看 超级用户&#xff08;root&#xff09;&#xff1a;可以不受限制地执行所有操作&#xff0c;拥有系统最高权限&#xff0c;修改系统设置与管理用户均需要root权限系统用户&#xff08;system&#xff09;&#xff1a;…

【C++】类与对象(二)特殊成员函数

前言 类与对象&#xff08;二&#xff09; 文章目录 一、特殊成员函数二、构造函数三、析构函数四、拷贝构造函数五、拷贝赋值运算符 一、特殊成员函数 如果在类的声明中未显式提供某个成员函数的定义&#xff0c;编译器会自动生成一个默认实现。 这包括默认构造函数、默认析构…

Redis的数据类型

目录 string 1.编码方式 2.应用场景 3.常用命令 hash 1.编码方式 2.应用场景 3.常用命令 list 1.编码方式 2.应用场景 3.常用命令 set 1.编码方式 2.应用场景 3.常用命令 zset 1.编码方式 2.应用场景 3.常用命令 如何理解Redis的编码方式 embs…

【Python】03快速上手爬虫案例三:搞定药师帮

文章目录 前言1、破解验证码2、获取数据 前言 提示&#xff1a;通过用户名、密码、搞定验证码&#xff0c;登录进药师帮网站&#xff0c;然后抓取想要的数据。 爬取数据&#xff0c;最终效果图&#xff1a; 1、破解验证码 使用药师帮测试系统&#xff1a;https://dianrc.ysb…

【保驾护航】HarmonyOS应用开发者基础认证-题库-2024

通过系统化的课程学习&#xff0c;熟练掌握DevEco Studio&#xff0c;ArkTS&#xff0c;ArkUI&#xff0c;预览器&#xff0c;模拟器&#xff0c;SDK等HarmonyOS应用开发的关键概念&#xff0c;具备基础的应用开发能力。 考试说明 1、考试需实名认证&#xff0c;请在考前于个…

有哪些ssl证书推荐

SSL证书是由CA认证机构颁发的数字证书&#xff0c;可以用来实现网站的身份验证和数据加密&#xff0c;保障用户与网站之间的通信安全。现在市场上知名的CA认证机构Digicert、Sectigo、Certum等&#xff0c;都已经成立了几十年&#xff0c;每年都要进行WebTrust安全审计&#xf…

HTTPS 之fiddler抓包--jmeter请求

一、浅谈HTTPS 我们都知道HTTP并非是安全传输&#xff0c;在HTTPS基础上使用SSL协议进行加密构成的HTTPS协议是相对安全的。目前越来越多的企业选择使用HTTPS协议与用户进行通信&#xff0c;如百度、谷歌等。HTTPS在传输数据之前需要客户端&#xff08;浏览器&#xff09;与服…

【Python笔记-设计模式】抽象工厂模式

一、说明 (一) 解决问题 抽象工厂是一种创建型设计模式&#xff0c;主要解决接口选择的问题。能够创建一系列相关的对象&#xff0c;而无需指定其具体类。 (二) 使用场景 系统中有多于一个的产品族&#xff0c;且这些产品族类的产品需实现同样的接口。 例如&#xff1a;有…

数字人解决方案VividTalk——音频驱动单张照片实现人物头像说话的效果

前言 VividTalk是一项由南京大学、阿里巴巴、字节跳动和南开大学共同开发的创新项目。该项目通过结合单张人物静态照片和一段语音录音&#xff0c;能够制作出一个看起来仿佛实际说话的人物视频。项目的特点包括自然的面部表情和头部动作&#xff0c;口型能够同步&#xff0c;同…