基于 Echarts 的 Python 图表库:Pyecahrts交互式的日历图和3D柱状图

文章目录

  • 概述
  • 一、日历图和柱状图介绍
    • 1. 日历图基本概述
    • 2. 日历图使用场景
    • 3. 柱状图基本概述
    • 4. 柱状图使用场景
  • 二、代码实例
    • 1. Pyecharts绘制日历图
    • 2. Pyecharts绘制2D柱状图
    • 3. Pyecharts绘制3D柱状图
  • 总结


概述

本文将引领读者深入了解数据可视化领域中的两个强大工具:Python 编程语言和 Pyecharts 库。我们将详细探讨如何使用 Pyecharts 创建令人印象深刻的柱状图和日历图,通过展示数据之美,提高信息传达的效果。


一、日历图和柱状图介绍

1. 日历图基本概述

日历图是一种用于展示时间数据的独特而强大的数据可视化工具。它以日历的形式呈现数据,让用户可以直观地看到时间的分布和趋势。在 Pyecharts 中,通过使用 Calendar 类,可以轻松地创建日历图。

日历图的特点:
1、时间视觉化: 将时间数据与日历的格子相对应,形成一种直观的时间分布视觉效果。

2、数据呈现: 每个日期格子内可以用颜色、大小等视觉元素来表示相应日期的数据,使得用户能够快速理解数据的高低、变化趋势。

3、周期性分析: 适合展示时间数据的周期性,例如每周、每月或每年的数据波动。

2. 日历图使用场景

1、时间分布可视化: 日历图适用于展示时间数据的分布情况。通过不同日期的颜色深浅或大小变化,可以直观地了解时间上的数据波动和趋势。

2、周期性数据: 当数据具有明显的周期性,例如每日、每周或每月的变化规律时,日历图能够清晰地呈现这种周期性。

3、事件发生频率: 如果你想了解某个事件在一段时间内的发生频率,并希望通过时间轴来展示这一信息,日历图是一个有效的选择。

4、节假日统计: 用于展示节假日的分布情况,对于某些业务场景,特定日期的数据可能会显著不同,日历图可以有效地呈现这些特殊日期。

3. 柱状图基本概述

柱状图是一种常用于展示各类数据的图表类型,它通过矩形的高度来表示不同类别或组的数值大小,以便于比较各组之间的差异和趋势。在 Pyecharts 中,使用 Bar 类可以轻松创建各种类型的柱状图。

柱状图的特点:
1、比较数据: 适用于比较不同组别之间的数据差异,通过柱子的高度可以直观地看出各组数据的相对大小。

2、分类展示: 通常用于呈现离散的、有限的类别数据,每个柱子代表一个类别或组。

3、趋势分析: 可以通过多组柱状图的排列和颜色等方式,展示数据的趋势和变化。

4. 柱状图使用场景

1、比较数据大小: 柱状图是比较不同组别或类别之间数据差异的理想选择。通过柱子的高度,用户可以直观地看到各组数据的相对大小。

2、趋势分析: 用于展示数据的变化趋势,特别是在时间序列中,柱状图可以清晰地呈现数据的上升或下降趋势。

3、分类展示: 柱状图通常用于呈现有限的、离散的类别数据,每个柱子代表一个类别或组。

4、部分和整体的关系: 如果你想比较各组数据与整体的关系,例如占比或分布情况,柱状图能够有效地展示这种关系。

5、堆叠柱状图: 适用于同时展示总体数值和各个部分之间的比例关系,以及各个部分的总体趋势。


二、代码实例

1. Pyecharts绘制日历图

代码如下(示例):

# 导入需要的库
import datetime
import random# 导入 Pyecharts 中的相关模块
from pyecharts import options as opts
from pyecharts.charts import Calendar# 定义起始和结束日期
begin = datetime.date(2017, 1, 1)
end = datetime.date(2017, 12, 31)# 生成模拟数据,每一天的步数随机生成
data = [[str(begin + datetime.timedelta(days=i)), random.randint(1000, 25000)]for i in range((end - begin).days + 1)
]# 创建 Calendar 图
c = (Calendar()# 添加数据和配置,指定时间范围为2017年.add("", data, calendar_opts=opts.CalendarOpts(range_="2017")).set_global_opts(# 设置图表标题title_opts=opts.TitleOpts(title="Calendar-2017年微信步数情况"),# 配置视觉映射visualmap_opts=opts.VisualMapOpts(max_=20000,min_=500,orient="horizontal",is_piecewise=True,pos_top="230px",pos_left="100px",),)# 渲染并保存为HTML文件.render("calendar_base.html")
)


2. Pyecharts绘制2D柱状图

代码如下(示例):

# 导入 Pyecharts 中的相关模块和 Faker 模块
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker# 创建 Bar 图实例
c = (Bar()  # 创建 Bar 图.add_xaxis(Faker.days_attrs)  # 添加 x 轴数据,使用 Faker 模块生成的日期数据.add_yaxis("商家A", Faker.days_values, color=Faker.rand_color())  # 添加 y 轴数据,商家A的数据,设置颜色.set_global_opts(title_opts=opts.TitleOpts(title="Bar-DataZoom(inside)"),  # 设置图表标题datazoom_opts=opts.DataZoomOpts(type_="inside"),  # 配置数据缩放选项,类型为"inside").render("bar_datazoom_inside.html")  # 渲染并保存为HTML文件
)

pyecharts柱状图

3. Pyecharts绘制3D柱状图

代码如下(示例):

# 导入 random 模块和 Pyecharts 中的相关模块
import random
from pyecharts import options as opts
from pyecharts.charts import Bar3D# 定义 x 和 y 轴数据
x_data = y_data = list(range(10))# 定义生成数据的函数
def generate_data():data = []for j in range(10):for k in range(10):value = random.randint(0, 9)data.append([j, k, value * 2 + 4])return data# 创建 Bar3D 图实例
bar3d = Bar3D()# 循环添加数据,生成10层堆叠柱状图
for _ in range(10):bar3d.add("",generate_data(),shading="lambert",  # 设置光照效果为 Lambertxaxis3d_opts=opts.Axis3DOpts(data=x_data, type_="value"),  # x 轴配置yaxis3d_opts=opts.Axis3DOpts(data=y_data, type_="value"),  # y 轴配置zaxis3d_opts=opts.Axis3DOpts(type_="value"),  # z 轴配置)# 设置全局选项
bar3d.set_global_opts(title_opts=opts.TitleOpts("Bar3D-堆叠柱状图示例"))# 设置系列选项,堆叠模式为 "stack"
bar3d.set_series_opts(**{"stack": "stack"})# 渲染并保存为 HTML 文件
bar3d.render("bar3d_stack.html")

3d柱状图


总结

在使用Pyecharts绘制2D和3D柱状图以及日历图时,通过简单而强大的接口,我们能够轻松定制图表外观,呈现数据的分布和趋势。3D柱状图生动展示数据在三维空间中的关系,而日历图则清晰展示时间轴上的数据变化。通过调整参数、定制图表样式,以及利用交互功能,我们能够创建具有吸引力和信息密度的可视化图表,有效传达数据。Pyecharts为数据科学家和分析师提供了强大的工具,帮助用户更好地理解和展示复杂的数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/249643.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

因子图、边缘化与消元算法的抽丝剥茧 —— Notes for “Factor Graphs for Robot Perception“

Title: 因子图、边缘化与消元算法的抽丝剥茧 —— Notes for “Factor Graphs for Robot Perception” 文章目录 I. 前言II. 因子图的基本概念1. 因子图的定义2. SLAM 中的因子图A. 因子图的图示B. 因子图的因式C. 因子图的二分图形式 III. 边缘化与消元运算的基本原理1. 边缘化…

python基础——池

池的介绍: 提前创建进程池,防止创建的进程数量过多导致系统性能受到影响,在系统执行任务时,系统会使用池中已经创建进程/线程,从而防止资源的浪费,创建的进程/线程可以让多个进程使用,从而降低…

Hadoop3.x基础(3)- MapReduce

来源: B站尚硅谷 目录 MapReduce概述MapReduce定义MapReduce优缺点优点缺点 MapReduce核心思想MapReduce进程常用数据序列化类型MapReduce编程规范WordCount案例实操本地测试提交到集群测试 Hadoop序列化序列化概述自定义bean对象实现序列化接口(Writable&#xff…

安全基础~通用漏洞3

文章目录 知识补充文件上传(1)ctfshow 文件上传靶场练习150-161 文件上传(2)ctfshow 文件上传靶场练习162-170 文件上传总结文件包含 知识补充 url编码:0a 换行;20空格;3c左尖括号;…

研发日记,Matlab/Simulink避坑指南(八)——else if分支结构Bug

文章目录 前言 背景介绍 问题描述 分析排查 解决方案 总结归纳 前言 见《研发日记,Matlab/Simulink避坑指南(三)——向上取整Bug》 见《研发日记,Matlab/Simulink避坑指南(四)——transpose()转置函数Bug》 见《研发日记,Matlab/Simuli…

IP 层转发分组的过程

目录 IP 层转发分组的过程 1.1 基于终点的转发 1.2 最长前缀匹配 转发表中的 2 种特殊的路由 主机路由 (host route) 默认路由 (default route) 路由器分组转发算法 1.3 使用二叉线索查找转发表 IP 层转发分组的过程 1.1 基于终点的转发 分组在互联网中是逐跳转发的。…

VMware vCenter告警:vSphere UI运行状况警报

vSphere UI运行状况警报 不会详细显示告警的具体内容,需要我们自己进一步确认告警原因。 vSphere UI运行状况警报是一种监控工具,用于检测vSphere环境中的潜在问题。当警报触发时,通常表示系统遇到了影响性能或可用性的问题。解决vSphere UI…

【LVGL源码移植】

LVGL源码移植 ■ LVGL源码移植一:下载LVGL源码二:修改LVGL文件夹1: 将这5个文件,复制到一个新的文件夹2: 简化文件,减少内存消耗(去除不必要的文件)3: 为了规范化,我们将下列文件进行重命名 三&…

Apache POI 处理excel文件 记录用法

Apache POI 写excel public static void write() throws IOException {//再内存中创建了一个Excel文件XSSFWorkbook excel new XSSFWorkbook();//创建一个sheet页XSSFSheet sheet excel.createSheet("info");//这里创建行对象,这里的rownum 是从0开始的,类似于数…

大数据开发之离线数仓项目(用户行为采集平台)(可面试使用)

第 1 章:数据仓库概念 数据仓库,是为企业指定决策,提供数据支持的,可以帮助企业,改进业务流程、提高产品质量等。 数据仓库的输入数据通常包括:业务数据、用户行为数据和爬虫数据等。 业务数据&#xff1a…

维护管理Harbor,docker容器的重启策略

维护管理Harbor 通过HarborWeb创建项目 在 Harbor 仓库中,任何镜像在被 push 到 regsitry 之前都必须有一个自己所属的项目。 单击“项目”,填写项目名称,项目级别若设置为"私有",则不勾选。如果设置为公共仓库&#…

【新书推荐】4.3节 键盘扫描码

本节内容:键盘扫描码。 ■键盘扫描码:8086计算机的键盘上的按键分为字符键、功能键和控制键。每一个按键都对应一个键盘扫描码。当按下按键时的扫描码称为通码,松开按键时的扫描码称为断码。如果按下的是字符键,则将其对应的一个…

假期刷题打卡--Day20

1、MT1173魔数 一个数字,把他乘以二,会得到一个新的数字,如果这个新数字依然由原数中那些数字组成,就称原数为一个魔数。输入正整数N,检查它是否是一个魔数,输出YES或者NO。 格式 输入格式: …

深度学习之反向传播

反向传播英文叫做Back Propagation。 为什么需要使用反向传播 对于简单的模型我们可以用解析式求出它的损失函数的梯度,例如,其损失函数的梯度就是,我们可以通过我们的数学知识很容易就得到其损失函数的梯度,继而进行使用梯度下…

网络原理,网络通信以及网络协议

​​​​💓 博客主页:从零开始的-CodeNinja之路 ⏩ 收录专栏:网络原理,网络通信以及网络协议 🎉欢迎大家点赞👍评论📝收藏⭐文章 文章目录 网络原理概念网络通信局域网LAN广域网WAN 网络通信IP地址端口号…

HBase介绍

一、HBase简介 1.1、HBase是什么 Google在200-2006发表了GFS、MapReduce、BigTable三篇 论文 ,号称“三驾马车”,开启了大数据的时代。 GFS是Google File System,开源实现是HDFS(Hadoop File System)。 MapReduce…

深度学习-搭建Colab环境

Google Colab(Colaboratory) 是一个免费的云端环境,旨在帮助开发者和研究人员轻松进行机器学习和数据科学工作。它提供了许多优势,使得编写、执行和共享代码变得更加简单和高效。Colab 在云端提供了预配置的环境,可以直接开始编写代码&#x…

vue2 导入使用vue-codemirror详解

目录 vue2 导入使用vue-codemirror详解1 介绍2 安装使用2.1 安装 vue-codemirror2.2 使用 codemirror2.2.1 引入 3 配置详情3.1 语言模式配置3.2 自动高度设置3.4 主题配置 4 总结 vue2 导入使用vue-codemirror详解 1 介绍 vue-codemirror是一个基于Vue的代码在线编辑器组件&…

Linux部署DataEase数据分析工具并结合内网穿透实现任意设备远程查看数据

文章目录 前言1. 安装DataEase2. 本地访问测试3. 安装 cpolar内网穿透软件4. 配置DataEase公网访问地址5. 公网远程访问Data Ease6. 固定Data Ease公网地址 前言 DataEase 是开源的数据可视化分析工具,帮助用户快速分析数据并洞察业务趋势,从而实现业务…

线性表的链式表示【单链表】

目录 单链表的优缺点 单链表结点的定义 头插法新建链表 尾插法新建链表 按位查找 按值查找 i 位置插入元素 单链表的删除 单链表的优缺点 优点缺点 1. 插入和删除操作不需要移动元素,只需要修改指针 2. 不需要大量的连续存储空间 1. 单链表附加指针域&…