计算机设计大赛 深度学习+opencv+python实现昆虫识别 -图像识别 昆虫识别

文章目录

  • 0 前言
  • 1 课题背景
  • 2 具体实现
  • 3 数据收集和处理
  • 3 卷积神经网络
    • 2.1卷积层
    • 2.2 池化层
    • 2.3 激活函数:
    • 2.4 全连接层
    • 2.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 MobileNetV2网络
  • 5 损失函数softmax 交叉熵
    • 5.1 softmax函数
    • 5.2 交叉熵损失函数
  • 6 优化器SGD
  • 7 学习率衰减策略
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的昆虫识别算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

中国是农业大国,在传统的农业生产中,经常会受到病虫害问题的困扰。在解决病虫害问题时,第一步是识别昆虫。在传统的昆虫识别方法中,昆虫专家根据专业知识观察昆虫的外部特征,并对照相关的昆虫图鉴进行识别,费时费力。如今,传统的昆虫识别方法逐渐被昆虫图像识别技术代替。目前常用的昆虫识别技术有图像识别法、微波雷达检测法、生物光子检测法、取样检测法、近红外及高光谱法、声测法等。近年来,随着人工智能的迅速发展,深度学习技术在处理自然语言、机器视觉等方面取得了很多成果,随着深度学习的发展,已经有研究人员开始将深度学习技术应用于昆虫的图像识别。文章旨在利用基于深度学习的图像识别技术解决昆虫识别问题,希望能给现实生活中的病虫害识别问题提供新的解决问题的思路。

2 具体实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 数据收集和处理

数据是深度学习的基石
数据的主要来源有: 百度图片, 必应图片, 新浪微博, 百度贴吧, 新浪博客和一些专业的昆虫网站等
爬虫爬取的图像的质量参差不齐, 标签可能有误, 且存在重复文件, 因此必须清洗。清洗方法包括自动化清洗, 半自动化清洗和手工清洗。
自动化清洗包括:

  • 滤除小尺寸图像.
  • 滤除宽高比很大或很小的图像.
  • 滤除灰度图像.
  • 图像去重: 根据图像感知哈希.

半自动化清洗包括:

  • 图像级别的清洗: 利用预先训练的昆虫/非昆虫图像分类器对图像文件进行打分, 非昆虫图像应该有较低的得分; 利用前一阶段的昆虫分类器对图像文件 (每个文件都有一个预标类别) 进行预测, 取预标类别的概率值为得分, 不属于原预标类别的图像应该有较低的得分. 可以设置阈值, 滤除很低得分的文件; 另外利用得分对图像文件进行重命名, 并在资源管理器选择按文件名排序, 以便于后续手工清洗掉非昆虫图像和不是预标类别的图像.
  • 类级别的清洗

手工清洗: 人工判断文件夹下图像是否属于文件夹名所标称的物种, 这需要相关的昆虫学专业知识, 是最耗时且枯燥的环节。

3 卷积神经网络

卷积神经网络(Convolutional Neural
Netwoek,CNN)是一种前馈神经网络,它的人工神经元可以局部响应周围的神经元,每个神经元都接收一些输入,并做一些点积计算。它通常包含卷积层、激活层、池化层、全连接层。
在这里插入图片描述

2.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

https://img-blog.csdnimg.cn/e1d4a146d12c4348bbc24790333cf8ba.png

2.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-
UTsB7AhE-1658995487680)(C:\Users\Administrator\AppData\Roaming\Typora\typora-
user-images\image-20220709114210181.png)]

2.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

2.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

2.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32,             # 卷积层神经元(卷积核)数目kernel_size=[5, 5],     # 感受野大小padding='same',         # padding策略(vaild 或 same)activation=tf.nn.relu   # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]x = self.pool1(x)                       # [batch_size, 14, 14, 32]x = self.conv2(x)                       # [batch_size, 14, 14, 64]x = self.pool2(x)                       # [batch_size, 7, 7, 64]x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]x = self.dense1(x)                      # [batch_size, 1024]x = self.dense2(x)                      # [batch_size, 10]output = tf.nn.softmax(x)return output

4 MobileNetV2网络

简介

MobileNet网络是Google最近提出的一种小巧而高效的CNN模型,其在accuracy和latency之间做了折中。

主要改进点

相对于MobileNetV1,MobileNetV2 主要改进点:

  • 引入倒残差结构,先升维再降维,增强梯度的传播,显著减少推理期间所需的内存占用(Inverted Residuals)
  • 去掉 Narrow layer(low dimension or depth) 后的 ReLU,保留特征多样性,增强网络的表达能力(Linear Bottlenecks)
  • 网络为全卷积,使得模型可以适应不同尺寸的图像;使用 RELU6(最高输出为 6)激活函数,使得模型在低精度计算下具有更强的鲁棒性
  • MobileNetV2 Inverted residual block 如下所示,若需要下采样,可在 DW 时采用步长为 2 的卷积
  • 小网络使用小的扩张系数(expansion factor),大网络使用大一点的扩张系数(expansion factor),推荐是5~10,论文中 t = 6 t = 6t=6

倒残差结构(Inverted residual block

ResNet的Bottleneck结构是降维->卷积->升维,是两边细中间粗

而MobileNetV2是先升维(6倍)-> 卷积 -> 降维,是沙漏形。
在这里插入图片描述区别于MobileNetV1,
MobileNetV2的卷积结构如下:
在这里插入图片描述
因为DW卷积不改变通道数,所以如果上一层的通道数很低时,DW只能在低维空间提取特征,效果不好。所以V2版本在DW前面加了一层PW用来升维。

同时V2去除了第二个PW的激活函数改用线性激活,因为激活函数在高维空间能够有效地增加非线性,但在低维空间时会破坏特征。由于第二个PW主要的功能是降维,所以不宜再加ReLU6。
在这里插入图片描述
tensorflow相关实现代码

import tensorflow as tfimport numpy as npfrom tensorflow.keras import layers, Sequential, Modelclass ConvBNReLU(layers.Layer):def __init__(self, out_channel, kernel_size=3, strides=1, **kwargs):super(ConvBNReLU, self).__init__(**kwargs)self.conv = layers.Conv2D(filters=out_channel, kernel_size=kernel_size, strides=strides, padding='SAME', use_bias=False,name='Conv2d')self.bn = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='BatchNorm')self.activation = layers.ReLU(max_value=6.0)   # ReLU6def call(self, inputs, training=False, **kargs):x = self.conv(inputs)x = self.bn(x, training=training)x = self.activation(x)return xclass InvertedResidualBlock(layers.Layer):def __init__(self, in_channel, out_channel, strides, expand_ratio, **kwargs):super(InvertedResidualBlock, self).__init__(**kwargs)self.hidden_channel = in_channel * expand_ratioself.use_shortcut = (strides == 1) and (in_channel == out_channel)layer_list = []# first bottleneck does not need 1*1 convif expand_ratio != 1:# 1x1 pointwise convlayer_list.append(ConvBNReLU(out_channel=self.hidden_channel, kernel_size=1, name='expand'))layer_list.extend([# 3x3 depthwise conv layers.DepthwiseConv2D(kernel_size=3, padding='SAME', strides=strides, use_bias=False, name='depthwise'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='depthwise/BatchNorm'),layers.ReLU(max_value=6.0),#1x1 pointwise conv(linear) # linear activation y = x -> no activation functionlayers.Conv2D(filters=out_channel, kernel_size=1, strides=1, padding='SAME', use_bias=False, name='project'),layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='project/BatchNorm')])self.main_branch = Sequential(layer_list, name='expanded_conv')def call(self, inputs, **kargs):if self.use_shortcut:return inputs + self.main_branch(inputs)else:return self.main_branch(inputs)  


5 损失函数softmax 交叉熵

5.1 softmax函数

Softmax函数由下列公式定义
在这里插入图片描述
softmax 的作用是把 一个序列,变成概率。

在这里插入图片描述

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,所有概率的和将等于1。

python实现

def softmax(x):shift_x = x - np.max(x)    # 防止输入增大时输出为nanexp_x = np.exp(shift_x)return exp_x / np.sum(exp_x)

PyTorch封装的Softmax()函数

dim参数:

  • dim为0时,对所有数据进行softmax计算

  • dim为1时,对某一个维度的列进行softmax计算

  • dim为-1 或者2 时,对某一个维度的行进行softmax计算

    import torch
    x = torch.tensor([2.0,1.0,0.1])
    x.cuda()
    outputs = torch.softmax(x,dim=0)
    print("输入:",x)
    print("输出:",outputs)
    print("输出之和:",outputs.sum())
    

5.2 交叉熵损失函数

定义如下:
在这里插入图片描述
python实现

def cross_entropy(a, y):return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))# tensorflow version
loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))# numpy version
loss = np.mean(-np.sum(y_*np.log(y), axis=1))

PyTorch实现
交叉熵函数分为二分类(torch.nn.BCELoss())和多分类函数(torch.nn.CrossEntropyLoss()

# 二分类 损失函数loss = torch.nn.BCELoss()l = loss(pred,real)# 多分类损失函数loss = torch.nn.CrossEntropyLoss()

6 优化器SGD

简介
SGD全称Stochastic Gradient Descent,随机梯度下降,1847年提出。每次选择一个mini-
batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题,但仍然有自适应学习率、容易卡在梯度较小点等问题。
在这里插入图片描述
pytorch调用方法:

torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)

相关代码:

    def step(self, closure=None):"""Performs a single optimization step.Arguments:closure (callable, optional): A closure that reevaluates the modeland returns the loss."""loss = Noneif closure is not None:loss = closure()for group in self.param_groups:weight_decay = group['weight_decay'] # 权重衰减系数momentum = group['momentum'] # 动量因子,0.9或0.8dampening = group['dampening'] # 梯度抑制因子nesterov = group['nesterov'] # 是否使用nesterov动量for p in group['params']:if p.grad is None:continued_p = p.grad.dataif weight_decay != 0: # 进行正则化# add_表示原处改变,d_p = d_p + weight_decay*p.datad_p.add_(weight_decay, p.data)if momentum != 0:param_state = self.state[p] # 之前的累计的数据,v(t-1)# 进行动量累计计算if 'momentum_buffer' not in param_state:buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()else:# 之前的动量buf = param_state['momentum_buffer']# buf= buf*momentum + (1-dampening)*d_pbuf.mul_(momentum).add_(1 - dampening, d_p)if nesterov: # 使用neterov动量# d_p= d_p + momentum*bufd_p = d_p.add(momentum, buf)else:d_p = buf# p = p - lr*d_pp.data.add_(-group['lr'], d_p)return loss

7 学习率衰减策略

余弦退火衰减
这可以理解为是一种带重启的随机梯度下降算法。在网络模型更新时,由于存在很多局部最优解,这就导致模型会陷入局部最优解,即优化函数存在多个峰值。这就要求,当模型陷入局部最优解时,能够跳出去,并且继续寻找下一个最优解,直到找到全局最优解。要使得模型跳出局部最优解,就需

多周期的余弦退火衰减示意图如下:
在这里插入图片描述
相关代码实现

# ----------------------------------------------------------------------- ## 多周期余弦退火衰减# ----------------------------------------------------------------------- ## eager模式防止graph报错tf.config.experimental_run_functions_eagerly(True)# ------------------------------------------------ #import math# 继承自定义学习率的类class CosineWarmupDecay(keras.optimizers.schedules.LearningRateSchedule):'''initial_lr: 初始的学习率min_lr: 学习率的最小值max_lr: 学习率的最大值warmup_step: 线性上升部分需要的steptotal_step: 第一个余弦退火周期需要对总stepmulti: 下个周期相比于上个周期调整的倍率print_step: 多少个step并打印一次学习率'''# 初始化def __init__(self, initial_lr, min_lr, warmup_step, total_step, multi, print_step):# 继承父类的初始化方法super(CosineWarmupDecay, self).__init__()# 属性分配self.initial_lr = tf.cast(initial_lr, dtype=tf.float32)self.min_lr = tf.cast(min_lr, dtype=tf.float32)self.warmup_step = warmup_step  # 初始为第一个周期的线性段的stepself.total_step = total_step    # 初始为第一个周期的总stepself.multi = multiself.print_step = print_step# 保存每一个step的学习率self.learning_rate_list = []# 当前步长self.step = 0# 前向传播, 训练时传入当前step,但是上面已经定义了一个,这个step用不上def __call__(self, step):# 如果当前step达到了当前周期末端就调整if  self.step>=self.total_step:# 乘上倍率因子后会有小数,这里要注意# 调整一个周期中线性部分的step长度self.warmup_step = self.warmup_step * (1 + self.multi)# 调整一个周期的总step长度self.total_step = self.total_step * (1 + self.multi)# 重置step,从线性部分重新开始self.step = 0# 余弦部分的计算公式decayed_learning_rate = self.min_lr + 0.5 * (self.initial_lr - self.min_lr) *       \(1 + tf.math.cos(math.pi * (self.step-self.warmup_step) /        \(self.total_step-self.warmup_step)))# 计算线性上升部分的增长系数kk = (self.initial_lr - self.min_lr) / self.warmup_step # 线性增长线段 y=kx+bwarmup = k * self.step + self.min_lr# 以学习率峰值点横坐标为界,左侧是线性上升,右侧是余弦下降decayed_learning_rate = tf.where(self.step<self.warmup_step, warmup, decayed_learning_rate)# 每个epoch打印一次学习率if step % self.print_step == 0:# 打印当前step的学习率print('learning_rate has changed to: ', decayed_learning_rate.numpy().item())# 每个step保存一次学习率self.learning_rate_list.append(decayed_learning_rate.numpy().item())# 计算完当前学习率后step加一用于下一次self.step = self.step + 1# 返回调整后的学习率return decayed_learning_rate

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/252057.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

H5 加密(MD5 Base64 sha1)

1. 说明 很多的时候是避免不了注册登录这一关的&#xff0c;但是一般的注册是没有任何的难度的&#xff0c;无非就是一些简单的获取用户输入的数据&#xff0c;然后进行简单的校验以后调用接口&#xff0c;将数据发送到后端&#xff0c;完成一个简单的注册的流程&#xff0c;那…

python的进程,线程、协程

python进程的实现 #coding:utf-8 from multiprocessing import Process import timedef run(name):print(%s is running % name)time.sleep(3)print(%s finished his run % name)if __name__ __main__:p Process(targetrun, args(XWenXiang,)) # 创建一个进程对象p.start()…

Jvm FullGC 如何排查?

使用场景 我们在使用系统时&#xff0c;有时请求和响应会变得特别慢&#xff0c;系统也变得很卡。 有可能是FullGC的问题&#xff0c;可以逐步地进行排查。 使用jps和top确定进程号pid jps可以列出正在运行的jvm进程&#xff0c;并显示jvm执行主类名称( main()函数所在的类…

Android Button background 失效

问题 Android Button background 失效 详细问题 笔者开发Android项目&#xff0c;期望按照 android:background中所要求的颜色展示。 实际显示按照Android 默认颜色展示 解决方案 将xml的Button 组件修改为<android.widget.Button> 即将代码 <Buttonandroid:l…

oracle数据库慢查询SQL

目录 场景&#xff1a; 环境&#xff1a; 慢SQL查询一&#xff1a; 问题一&#xff1a;办件列表查询慢 分析&#xff1a; 解决方法&#xff1a; 问题二&#xff1a;系统性卡顿 分析&#xff1a; 解决方法&#xff1a; 慢SQL查询二 扩展&#xff1a; 场景&#xff1a; 线…

用Audio2Face导出Unity面部动画

开始之前说句话&#xff0c;新年前最后一篇文章了 一定别轻易保存任何内容&#xff0c;尤其是程序员不要轻易Ctrl S 在A2F去往Unity的路上&#xff0c;还要经历特殊Blender&#xff0c;自己电脑中已下载好的可能不是很好使。 如果想查看UE相关的可以跳转到下边这两篇链接 1. …

【51单片机】LED的三个基本项目(LED点亮&LED闪烁&LED流水灯)(3)

前言 大家好吖&#xff0c;欢迎来到 YY 滴单片机系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过单片机的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; YY的《C》专栏YY的《C11》专栏YY的…

瑞_23种设计模式_工厂模式

文章目录 1 什么是工厂模式案例案例代码 2 简单工厂模式&#xff08;Simple Factory&#xff09;2.1 简单工厂模式的结构2.2 案例改进——简单工厂模式2.3 案例改进代码实现2.4 简单工厂模式优缺点2.5 拓展——静态工厂 3 工厂方法模式&#xff08;Factory Method&#xff09;★…

两个重要极限【高数笔记】

【第一个&#xff1a;lim &#xff08;sinx / x&#xff09; 1, x -- > 0】 1.本质&#xff1a; lim &#xff08;sin‘&#xff1f;’ / ‘&#xff1f;’&#xff09; 1, ‘&#xff1f;’ -- > 0&#xff1b;保证‘&#xff1f;’ -- > 0,与趋向无关 2.例题&#x…

gtkmm xml ui 例子(from string)

文章目录 前言来看一个从字符串中生成UI的例子 前言 glade生成的xml格式不被gtkmm4支持, 需要作修改 来看一个从字符串中生成UI的例子 #include <gtkmm/application.h> #include <gtkmm.h> #include <iostream> using namespace std;class ExampleWindow :…

Cesium DC-SDK集成iconfont阿里矢量图标

Cesium DC-SDK集成iconfont阿里矢量图标 Cesium通过集成iconfont阿里矢量图标&#xff0c;实现自定义图标颜色设置&#xff0c;具体操作如下&#xff1a; 一、引入阿里图标库 1、 通过链接的方式引入到项目中 在项目中引入方式 import url("//at.alicdn.com/t/c/font_…

ONLYOFFICE:一站式办公,探索高效办公新境界

写在前面ONLYOFFICE 介绍ONLYOFFICE 有哪些优势ONLYOFFICE 文档 8.0 发布如何体验 ONLYOFFICEONLYOFFICE 文档部分页面截图 写在前面 在当今这样一个数字化时代&#xff0c;办公软件已经成为我们日常工作中不可或缺的一部分&#xff0c;熟练使用 Office、WPS、腾讯文档、金山文…

前端学习第4天

一、复合选择器 1.后代选择器 2.子代选择器 3.并集选择器 4.交集选择器 5.伪类选择器 1.伪类-超链接&#xff08;拓展&#xff09; 二、CSS特性 1.继承性 body放在style中 2.层叠性 3.优先级 属性 !important;&#xff08;最高优先级&#xff09; 1.优先级-叠加计算规则 2.em…

深度学习介绍

对于具备完善业务逻辑的任务&#xff0c;大多数情况下&#xff0c;正常的人都可以给出一个符合业务逻辑的应用程序。但是对于一些包含超过人类所能考虑到的逻辑的任务&#xff0c;例如面对如下任务&#xff1a; 编写一个应用程序&#xff0c;接受地理信息、卫星图像和一些历史…

利用视图实现复杂查询

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; 利用视图实现复杂查询 需求&#xff1a;需要对Excel表中导入的四列进行&#xff0c;精准查询&#xff08;搜索符合这四列的数据&#xff09;&#xff0c;并提供预览后…

springboot154基于Spring Boot智能无人仓库管理

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

Vue3.0(二):Vue组件化基础 - 脚手架

Vue组件化基础 - 脚手架 Vue的组件化 我们在处理一些任务量比较庞大的工作时候&#xff0c;会将工作内容进行拆分&#xff0c;分步骤完成 而组件化的思想正式如此&#xff0c;对于一个庞大的项目&#xff0c;我们可以将其拆分成一个个的小功能&#xff0c;分步骤进行实现 组…

Intellij IDEA各种调试+开发中常见bug

Intellij IDEA中使用好Debug&#xff0c;主要包括如下内容&#xff1a; 一、Debug开篇 ①、以Debug模式启动服务&#xff0c;左边的一个按钮则是以Run模式启动。在开发中&#xff0c;我一般会直接启动Debug模式&#xff0c;方便随时调试代码。 ②、断点&#xff1a;在左边行…

docker重建镜像

DockerFile如下&#xff1a; FROM k8s-registry.qhtx.local/base/centos7-jdk8-haitong0704RUN yum -y update && yum install -y python3-devel && yum install -y python36 RUN mv /usr/bin/python /usr/bin/python_old RUN ln -s /usr/bin/python3 /usr/bi…

windows安装Visual Studio Code,配置C/C++运行环境(亲测可行)

一.下载 Visual Studio Code https://code.visualstudio.com/ 二.安装 选择想要安装的位置: 后面的点击下一步即可。 三.下载编译器MinGW vscode只是写代码的工具&#xff0c;使用编译器才能编译写的C/C程序&#xff0c;将它转为可执行文件。 MinGW下载链接&#xff1a;…