五、机器学习模型及其实现1

1_机器学习

1)基础要求:所有的数据全部变为了特征,而不是eeg信号了

  • python基础
  • 已经实现了特征提取、特征选择(可选)
  • 进行了数据预处理.预处理指对数据进行清洗、转换等处理,使数据更适合机器学习的工具。Scikit 提供了一些预处理的方法,分别是标准化、非线性转换、归一化、二值化、分类特征编码、缺失值插补、生成多项式特征等

2)机器学习送入模型的数据结构:data和label

  • data:n*m的矩阵,n是样本数,m是特征数。
    特征一定是一维特征,不能是n * m1 * m2。如果是二维用reshape转为一维。
  • label:1*n(n)的特征,N个样本对应n个label。

机器学习就是给定一定的输入,通过施加一定的算法,得到输出,然后通过学到的知识,输入新的
数据,获得新的输出。
1)提出问题 2)理解数据 3)特征提取 4)构建模型 5)模型解释
在这里插入图片描述

2_回归Regression(回归)

output输出:离散值
在这里插入图片描述
在这里插入图片描述Machine learning的三大步骤:
第一步:定义一个函数集合(define a function set)
第二步:判断函数的好坏(goodness of a function)
第三步:选择最好的函数(pick the best one)

Step1:定义一个函数集合(define a function set)

在这里插入图片描述

Step2:判断函数的好坏(goodness of a function)

在这里插入图片描述
在这里插入图片描述

Step3:选择最好的函数(pick the best one)

在这里插入图片描述在这里插入图片描述
求解w,b?机器学习中最常用的一种方法叫梯度下降。
每个模型都有自己的损失函数,不管是监督式学习还是非监督式学习。损失函数包含了若干个位置的模型参数,比如在多元线性回归中,损失函数均方误差 ,我们就是要找到使损失函数尽可能小的参数未知模型参数。
在简单线性回归时,我们使用最小二乘法来求损失函数的最小值,但是这只是一个特例。在绝大多数的情况下,损失函数是很复杂的(比如逻辑回归),根本无法得到参数估计值的表达式。因此需要一种对大多数函数都适用的方法。这就引出了“梯度算法”。

  • 梯度(gradient)
    在这里插入图片描述
  • 学习率(learning rate)
    在这里插入图片描述
  • local minima和global minima
    在这里插入图片描述在这里插入图片描述

此时,已经找到了好的w,b。就构成了一个线性模型:
在这里插入图片描述

接着,在测试集上测试,如果测试集上的准确率较好,该模型就被训练好了。

  • 过拟合问题
    一个重要问题:过拟合(在训练集上表现好,在测试集上表现差)
    在这里插入图片描述
  • 局部最小问题
    在这里插入图片描述

3_线性回归

线性回归是回归问题中的一种,线性回归假设目标值与特征之间线性相关,即满足一个多元一次方程。
通过构建损失函数,来求解损失函数最小时的参数w和b。
在这里插入图片描述

continue…

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/252799.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

thinkphp6入门(19)-- 中间件向控制器传参

可以通过给请求对象赋值的方式传参给控制器&#xff08;或者其它地方&#xff09;&#xff0c;例如 <?phpnamespace app\middleware;class Hello {public function handle($request, \Closure $next){$request->hello ThinkPHP;return $next($request);} } 然后在控制…

ubuntu 上安装和配置Apache2+Subversion

目录 一、安装Apache2和SVN 二、Apache2设置 三、subversion配置 四、创建仓库和设置权限 五、仓库备份和恢复 系统环境 Ubuntu Linux (20.04) apache2 Subversion(1.13.0) 一、安装Apache2和SVN 通过命令在线安装apache2和subversion apt-get install apache2 libap…

06 MP之自动填充+SQL执行的语句和速度分析

1. 自动填充 在项目中有一些属性&#xff0c;比如常见的创建时间和更新时间可以设置为自动填充。 1.1 实例 需求: 将创建时间和更新时间设置为自动填充, 这样每次插入数据时可以不用理会这两个字段 1.1.1 在数据库增加字段 默认开启驼峰映射 createTime --> create_time…

回归预测 | Matlab实现OOA-CNN-LSTM-Attention鱼鹰算法优化卷积长短期记忆网络注意力多变量回归预测(SE注意力机制)

回归预测 | Matlab实现OOA-CNN-LSTM-Attention鱼鹰算法优化卷积长短期记忆网络注意力多变量回归预测&#xff08;SE注意力机制&#xff09; 目录 回归预测 | Matlab实现OOA-CNN-LSTM-Attention鱼鹰算法优化卷积长短期记忆网络注意力多变量回归预测&#xff08;SE注意力机制&…

[NOIP2017 提高组] 宝藏

[NOIP2017 提高组] 宝藏 题目背景 NOIP2017 D2T2 题目描述 参与考古挖掘的小明得到了一份藏宝图&#xff0c;藏宝图上标出了 n n n 个深埋在地下的宝藏屋&#xff0c; 也给出了这 n n n 个宝藏屋之间可供开发的 m m m 条道路和它们的长度。 小明决心亲自前往挖掘所有宝…

JWT令牌 | 一个区别于cookie/session的更安全的校验技术

目录 1、简介 2、组成成分 3、应用场景 4、生成和校验 5、登录下发令牌 &#x1f343;作者介绍&#xff1a;双非本科大三网络工程专业在读&#xff0c;阿里云专家博主&#xff0c;专注于Java领域学习&#xff0c;擅长web应用开发、数据结构和算法&#xff0c;初步涉猎Pyth…

Apache Zeppelin 整合 Spark 和 Hudi

一 环境信息 1.1 组件版本 组件版本Spark3.2.3Hudi0.14.0Zeppelin0.11.0-SNAPSHOT 1.2 环境准备 Zeppelin 整合 Spark 参考&#xff1a;Apache Zeppelin 一文打尽Hudi0.14.0编译参考&#xff1a;Hudi0.14.0 最新编译 二 整合 Spark 和 Hudi 2.1 配置 %spark.confSPARK_H…

re:从0开始的CSS学习之路 3. CSS三大特性

0. 写在前面 很多的学习其实并不知道在学什么&#xff0c;学一个新东西学着学着就变成了抄代码&#xff0c;背概念。把看视频学习变成了一个赶进度的任务&#xff0c;到头来只学到了一些皮毛。 文章目录 0. 写在前面1. CSS三大特性——层叠性2. CSS三大特性——优先级3. CSS三…

记录关于node接收并解析前端上传excel文件formData踩的坑

1.vue2使用插件formidable实现接收文件&#xff0c;首先接口不可以使用任何中间件&#xff0c;否则form.parse()方法不执行。 const express require(express) const multipart require(connect-multiparty); const testController require(../controller/testController)/…

vue2学习笔记(2/2)

vue2学习笔记&#xff08;1/2&#xff09; vue2学习笔记&#xff08;2/2&#xff09; 文章目录 1. 初始化脚手架2. 分析脚手架&render函数文件结构图示及说明main.jsindex.htmlApp.vueSchool.vueStudent.vue 关于不同版本的Vue修改默认配置vue.config.js配置文件 3. ref属…

GPT3.5\GPT4系列计算完整prompt token数的官方方法

前言: ChatGPT如何计算token数&#xff1f;https://wtl4it.blog.csdn.net/article/details/135116493?spm1001.2014.3001.5502https://wtl4it.blog.csdn.net/article/details/135116493?spm1001.2014.3001.5502 GPT3.5\GPT4系列计算完整prompt token数的官方方法&#xff1…

AR特效自研AI算法技术解决方案

在当今这个高速发展的数字化时代&#xff0c;增强现实&#xff08;AR&#xff09;技术已经成为企业创新和市场竞争的重要手段。美摄科技凭借对AI技术的深厚积累&#xff0c;为企业提供了一套创新的AR特效自研AI算法技术解决方案&#xff0c;旨在满足企业在AR领域的多元化需求。…

「数据结构」八大排序2:快排、归并排序

&#x1f387;个人主页&#xff1a;Ice_Sugar_7 &#x1f387;所属专栏&#xff1a;初阶数据结构 &#x1f387;欢迎点赞收藏加关注哦&#xff01; 八大排序2 &#x1f349;快速排序&#x1f34c;霍尔版本&#x1f34c;挖坑法&#x1f34c;前后指针法 &#x1f349;快排优化&am…

Spring核心基础:全面总结Spring中提供的那些基础工具类!

内容概要 Spring Framework 提供了众多实用的工具类&#xff0c;这些工具类在简化开发流程、提升代码质量和维护性方面发挥了重要作用&#xff0c;以下是部分关键工具类的总结及其使用场景&#xff1a; StringUtils&#xff1a;不仅提供了基础的字符串操作&#xff0c;如拼接…

LLM(大语言模型)——大模型简介

目录 概述 发展历程 大语言模型的概念 LLM的应用和影响 大模型的能力、特点 大模型的能力 涌现能力&#xff08;energent abilities&#xff09; 作为基座模型支持多元应用的能力 支持对话作为统一入口的能力 大模型的特点 常见大模型 闭源LLM&#xff08;未公开源…

uni-app 经验分享,从入门到离职(三)——关于 uni-app 生命周期快速了解上手

文章目录 &#x1f4cb;前言⏬关于专栏 &#x1f3af;什么是生命周期&#x1f9e9;应用生命周期&#x1f4cc; 关于 App.vue/App.uvue &#x1f9e9;页面生命周期&#x1f4cc;关于 onShow 与 onLoad 的区别 &#x1f9e9;组件生命周期 &#x1f4dd;最后 &#x1f4cb;前言 这…

北朝隋唐文物展亮相广西,文物预防性保护网关保驾护航

一、霸府名都——太原博物馆收藏北朝隋朝文物展 2月1日&#xff0c;广西民族博物馆与太原博物馆携手&#xff0c;盛大开启“霸府名都——太原博物馆北朝隋文物展”。此次新春展览精选了北朝隋唐时期150多件晋阳文物珍品。依据“巍巍雄镇”“惊世古冢”“锦绣名都”三个单元&am…

Web3行业研究逐步加强,“链上数据”缘何成为关注焦点?

据中国电子报报道&#xff0c;近日&#xff0c;由中关村区块链产业联盟指导&#xff0c;中国信息通信研究院牵头&#xff0c;欧科云链控股有限公司参与编写的《全球Web3产业全景与发展趋势研究报告&#xff08;2023年&#xff09;》正式发布。研究报告通过全面追踪国内外Web3产…

图论练习2

内容&#xff1a;路径计数DP&#xff0c;差分约束 最短路计数 题目大意 给一个个点条边的无向无权图&#xff0c;问从出发到其他每个点的最短路有多少条有自环和重边&#xff0c;对答案 解题思路 设边权为1&#xff0c;跑最短路 表示的路径数自环和重边不影…

[office] 怎么样在excel中插入虚线圆圈 #学习方法#微信#知识分享

怎么样在excel中插入虚线圆圈 Excel中可以插入圆形&#xff0c;然后将边框设置为虚线&#xff0c;从而得到虚线圆。 软件版本&#xff1a;Office2007 方法如下&#xff1a; 1.点击插入菜单中的形状&#xff0c;选择椭圆&#xff1a; 2.按下Shift键&#xff0c;同时拖动鼠标…