选择大语言模型:2024 年开源 LLM 入门指南

作者:来自 Elastic Aditya Tripathi

如果说人工智能在 2023 年起飞,这绝对是轻描淡写的说法。数千种新的人工智能工具被推出,人工智能功能被添加到现有的应用程序中,好莱坞因对这项技术的担忧而戛然而止。 甚至还有一个人工智能工具可以评估你像弗雷迪·墨丘利 (Freddie Mercury) 一样唱歌的水平,因为当然有!

但在每个人工智能工具或功能的背后,都有一个大型语言模型 (LLM) 承担着所有繁重的工作,其中许多都是开源的。 LLM 是一种深度学习算法,能够消耗大量数据来理解和生成语言。 它们建立在神经网络架构之上,可以训练它们执行各种自然语言处理 (NLP) 任务,例如内容生成、翻译、分类和许多其他用例。 再加上开源 LLMs 的可用性,使得关键业务任务的自动化变得更加容易 —— 例如开发客户支持聊天机器人、检测欺诈或协助疫苗开发等研发 —— 以及跨多个行业的各种其他用例。 LLMs 还可以通过扩展我们处理和分析数据的方式,在提高云安全性、搜索和可观察性方面发挥至关重要的作用。

与任何新技术一样,LLMs 的使用也带来了需要考虑和解决的挑战。 输出的质量完全取决于所提供数据的质量。 许多 LLMs 接受过大型公共数据存储库的培训,在没有接受过特定领域数据的培训时,他们倾向于 “产生幻觉” 或给出不准确的答案。 个人信息和用户生成内容的收集、存储和保留还存在隐私和版权问题。

查看我们的页面:什么是大语言模型? 了解有 LLMs 的更多信息。

什么是开源 LLM?

开源 LLM 是免费提供的 LLM,任何人都可以修改和定制。

有了开源 LLM,任何个人或企业都可以将其用于自己的目的,而无需支付许可费。 这包括将 LLM 部署到他们自己的基础设施中,并对其进行微调以满足他们自己的需求。

这与闭源 LLM 相反,闭源 LLM 是个人或组织拥有的专有模型,不对公众开放。 最著名的例子就是 OpenAI 的 GPT 系列模型。

LLM 的最佳用例是什么?

LLMs 有无穷无尽的潜在用例,但以下是一些关键功能,可以展示他们可以做的各种事情:

  • 情感分析 (Sentiment analysis):LLMs 可用于识别和分类从反馈、社交媒体等收集的主观意见。
  • 内容创建 (Content creation):一些 LLMs 可以生成与上下文相关的内容,例如文章、营销文案和产品描述。
  • 聊天机器人 (Chatbot):你可以微调 LLMs 以用作聊天机器人帮助或与客户互动。
  • 翻译 (Translations):使用多语言文本数据,LLMs 可用于翻译人类语言以帮助交流。
  • 研究 (Research):LLMs 可以轻松完成研究工作,能够消费和处理大量数据并返回最相关的信息。

2024 年热门开源 LLMs

为了让你更轻松地为你的公司或项目选择开源 LLMs,我们总结了八个最有趣的开源 LLMs。 我们根据活跃的人工智能社区和机器学习存储库 Hugging Face 的流行度度制定了此列表。

1. GPT-NeoX-20B

GPT-NeoX-20B 由 EleutherAI 开发,是一种自回归语言模型,其架构设计类似于 GPT-3。 它使用 GPT-NeoX 库和来自 The Pile 的数据进行训练,The Pile 是由 The Eye 托管的 800GB 开源数据集。

GPT-NeoX-20B 主要是为了研究目的而开发的,拥有 200 亿个可供你使用和自定义的参数。

它是给谁用的?

GPT-NeoX-20B 非常适合需要高级内容生成的中型/大型企业,例如营销机构和媒体公司。 这些公司需要拥有运行更大的 LLMs 所需的熟练人员和计算能力。

它不适合谁?

该 LLMs 不适合没有财务和技术资源来管理计算要求的小型企业或个人。

使用复杂性

由于它不适合按原样部署,因此你需要技术专业知识来部署和微调 GPT-NeoX-20B,以满足你的特定任务和需求。

2. GPT-J-6b

GPT-J-6b 也是由 EleutherAI 开发的,是一种生成式预训练 Transformer 模型,旨在根据提示生成类似人类的文本。 它使用 GPT-J 模型构建,拥有 60 亿个可训练参数(因此得名)。

它是在纯英语数据集上进行训练的,这使得它不适合翻译或生成非英语语言的文本。

它是给谁用的?

GPT-J-6b 易于使用且尺寸相对较小,非常适合寻求性能和资源消耗之间平衡的初创公司和中型企业。

它不适合谁?

对于需要更高级模型性能和定制的企业来说,该 LLM 可能不是最佳选择。 它也不适合需要多语言支持的公司。

使用复杂性

GPT-J-6b 是一个适度用户友好的 LLM,受益于拥有支持性社区,使具有中等技术知识的企业可以使用它。

3. Llama 2

Meta 对 Google 和 OpenAI 流行的 LLMs 回应,Llama 2。 它是在公开可用的在线数据源上进行培训,旨在创建人工智能驱动的体验。 它可以针对特定任务进行微调,并且完全免费用于研究和商业用途。

Llama 2 以 Meta 在 LLaMA 上的工作为基础,提供三种模型大小 —— 70 亿、130 亿和 700 亿个参数——使其成为一个动态且可扩展的选项。

它是给谁用的?

由于模型大小的选择,Llama 2 对于想要利用广泛语言模型的研究人员和教育开发人员来说是一个不错的选择。 它甚至可以在消费级计算机上运行,这使其成为爱好者的一个不错的选择。

它不适合谁?

Llama 2 不太适合高风险或更利基的应用,因为它不适用于高度专业化的任务,并且对其输出的可靠性存在一些担忧。

使用复杂性

这是一个相对易于使用的 LLM,专注于教育应用,但可能需要定制才能获得最佳结果。

4. BLOOM

BLOOM 是一种仅解码器的 Transformer 语言模型,拥有 1760 亿个海量参数。 它旨在根据提示生成文本,并且可以进行微调以执行特定任务,例如文本生成、摘要、嵌入、分类和语义搜索。

它是在包含 46 种不同语言的数百个来源的数据集上进行训练的,这也使其成为语言翻译和多语言输出的绝佳选择。

它是给谁用的?

BLOOM 非常适合面向需要多语言支持的全球受众的大型企业。 由于该模型的规模较大,企业还需要有充足的可用资源来运行它。

它不适合谁?

仅在英语市场运营的公司可能会发现其多语言功能是多余的,特别是需要大量资源来定制和训练如此大的模型。

使用复杂性

由于需要理解语言的细微差别以及在不同语言环境中的部署,BLOOM 具有中等到高的复杂性。

5. Falcon

Falcon 是一个 LLM,他看着 BLOOM 说:“噗,只有 1760 亿个参数?”

好吧,他们实际上并没有这么说,但他们的开源语言模型确实有三种令人印象深刻的规模:70 亿、400 亿和 1800 亿。

Falcon 已获得 Apache License 2.0 许可,是一种自回归 LLM,旨在根据提示生成文本,并基于其高质量的 RefinedWeb 数据集。

它是给谁用的?

由于其卓越的性能和可扩展性,Falcon 非常适合对多语言解决方案(如网站和营销创建、投资分析和网络安全)感兴趣的大型公司。

它不适合谁?

尽管有 70 亿个选项,但这仍然不是寻找简单的即插即用内容生成解决方案的企业的最佳选择。 对于这些类型的任务来说,定制和训练模型的成本仍然太高。

使用复杂性

尽管最大的模型尺寸巨大,但与其他一些 LLMs 相比,Falcon 相对容易使用。 但你仍然需要了解特定任务的细微差别,才能充分利用它们。

6. CodeGen

这个来自 Salesforce 的 LLM 与此列表中的任何其他 LLM 不同,因为它不输出文本答案或内容,而是输出计算机代码。 CodeGen 是 “代码生成” 的缩写,这正是它的作用。 它经过训练可以根据现有代码或自然语言提示输出代码。

CodeGen 提供 70 亿、130 亿和 340 亿个参数,旨在创建一种简化的软件开发方法。

它是给谁用的?

CodeGen 适用于希望自动化编码任务并提高开发人员工作效率的科技公司和软件开发团队。

它不适合谁?

如果你的公司不编写或使用计算机代码,那么该 LLM 不适合你!

使用复杂性

CodeGen 集成到现有的开发工作流程中可能很复杂,并且需要扎实的软件工程背景。

7. BERT

BERT 是最早的现代 LLMs 之一,是 Google 于 2018 年创建的纯编码器转换器架构。它旨在理解、生成和操作人类语言。

Google 本身已使用 BERT 来提高搜索中的查询理解,并且在文本生成、问答和情感分析等其他任务中也很有效。

它是给谁用的?

考虑到它是 Google 自身搜索的关键部分,对于想要为搜索引擎优化网站和内容并提高内容相关性的 SEO 专家和内容创建者来说,BERT 是最佳选择。

它不适合谁?

除了 SEO 之外,BERT 在许多情况下可能不会是最好的选择,因为它的年龄较大,这使得它与更大、更新的替代方案相比显得多余。

使用复杂性

对于熟悉 SEO 和内容优化的人来说,BERT 相当简单,但它可能需要微调才能跟上 Google 最新 SEO 建议的变化。

8. T5

T5(朗朗上口的文本到文本传输转换器的缩写)是一种基于转换器的架构,使用文本到文本的方法。 它将 NLP 问题转换为输入和输出始终为文本字符串的格式,这使得 T5 可用于翻译、问答和分类等各种任务。 它有五种不同的尺寸可供选择,参数范围从 6000 万个参数到 110 亿个参数不等。

它是给谁用的?

T5 非常适合需要多功能工具来执行各种文本到文本处理任务(例如摘要、翻译和分类)的公司。

它不适合谁?

尽管 T5 相对灵活,但它不适合需要任何类型的非文本输出的任务。

使用复杂性

与其他 LLM 相比,T5 通常被认为易于使用,并提供一系列预训练模型。 但它可能仍然需要一些专业知识来适应更利基或特定的任务。

免责声明:所有参数和模型尺寸在发布时都是正确的,但此后可能已发生变化。

为你的企业选择合适的 LLM

在决定使用哪个开源 LLM 时,你需要考虑几个关键标准:

  • 成本:由于这些 LLMs 是开源的,因此你无需为模型本身付费。 但你确实需要考虑托管、培训、资源等的成本。LMM 规模越大、越复杂,你的成本可能就越高。 这是因为更大的 LLM 将需要更多的数据存储成本、处理能力、更大的基础设施和维护成本。
  • 准确性:评估你的选择的准确性至关重要。 你需要比较不同的 LLMs 执行你所需的任务类型的准确程度。 例如,某些模型将是特定于领域的,而某些模型可以通过微调或检索增强生成(RAG)进行改进。
  • 性能:LLM 的表现是通过语言流畅性、连贯性和上下文理解等指标来衡量的。 LLM 在这些方面做得越好,它的表现就越好。 这将改善用户体验和任务效率,并为你带来竞争优势。
  • 数据安全:数据的安全性是另一个关键考虑因素。 如果你正在处理敏感数据或 PII 数据,这一点尤其重要。 这是 RAG 可能有用的另一个领域,因为你可以使用文档级安全性来控制对数据的访问并限制对特定数据的安全权限。
  • 特定任务与通用目的:考虑你是否需要解决更具体用例的 LLM,还是涵盖更广泛任务的 LLM。 由于某些模型是特定于领域的,因此你需要小心选择你所在领域内的模型或寻找范围更广泛的模型。
  • 训练数据的质量:如果数据质量不好,结果也不会好。 评估每个 LLM 使用的数据并选择一个你有信心的数据。RAG 也将帮助你完成此任务,因为你可以使用自定义数据,可以准备和微调这些数据以直接提高输出的质量。
  • 技能组合:另一个需要考虑的重要因素是项目团队中现有的技能组合。 数据科学、MLOps 和 NLP 等领域的经验是必须的。 LLM 越复杂,你的团队需要具备的技能就越深。 如果你在这方面受到更多限制,那么值得关注更简单的 LLM,甚至寻求引入更多专业知识。

使用这些标准,你应该能够决定我们涵盖的哪些 LLM 最适合你的独特情况。

最好的方法是慢慢来,查看列出的选项,并根据它们如何最好地帮助你解决问题来评估它们。 所有这些开源 LLMs 都非常强大,如果有效利用,可以带来变革。

原文:Choosing an LLM: The 2024 getting started guide to open-source LLMs | Elastic Blog

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/253037.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【计算机网络】Socket的SO_TIMEOUT与连接超时时间

SO_TIMEOUT选项是Socket的一个选项,用于设置读取数据的超时时间。它指定了在读取数据时等待的最长时间,如果在指定的时间内没有数据可读取,将抛出SocketTimeoutException异常。 SO_TIMEOUT的设置 默认情况下,SO_TIMEOUT选项的值…

vue3项目中使用mapv

vue3项目中使用mapv mapv是百度地图官方提供的地图数据可视化开源项目,提供了很多效果酷炫的绘图api mapv地址在这里,示例图在这里 先解释为什么要用mapv echarts画的地图,都是行政区划,就算是geo地图,也只能在行政…

神经网络 | 常见的激活函数

Hi,大家好,我是半亩花海。本文主要介绍神经网络中必要的激活函数的定义、分类、作用以及常见的激活函数的功能。 目录 一、激活函数定义 二、激活函数分类 三、常见的几种激活函数 1. Sigmoid 函数 (1)公式 (2&a…

【DevOps】产品需求文档(PRD)与常见原型软件

文章目录 1、PRD介绍1.1、概述1.2、前提条件1.3、主要目的1.4、关键内容1.5、表述方式1.6、需求评审人员1.7、一般内容结构 2、需求流程3、常见原型软件3.1、Word3.2、Axure3.2.1、详细介绍3.2.2、应用分类3.2.3、优缺点 3.3、摹客RP3.4、蓝湖3.5、GUI Design Studio 1、PRD介绍…

[VulnHub靶机渗透] dpwwn: 1

🍬 博主介绍👨‍🎓 博主介绍:大家好,我是 hacker-routing ,很高兴认识大家~ ✨主攻领域:【渗透领域】【应急响应】 【python】 【VulnHub靶场复现】【面试分析】 🎉点赞➕评论➕收藏…

HTML -- 常用标签

目录 HTML 标签 单标签 双标签 常见标签的使用 标题和段落 换行、分隔、超链接 列表标签 表单标签 属性 属性的使用 HTML HTML(Hyper Text Markup Language),超文本标记语言,是一门标记语言,不是编程语言&am…

微信小程序(三十七)选项点击高亮效果

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.选择性渲染类 2.以数字为需渲染内容&#xff08;数量&#xff09; 源码&#xff1a; index.wxml <view class"Area"><!-- {{activeNumindex?Active:}}是选择性添加类名进行渲染 -->&l…

VC++添加菜单学习

新建一个单文档工程&#xff1b; 完成以后看一下有没有出现如下图的 资源视图 的tab&#xff1b;如果没有&#xff0c;在文件列表中找到xxx.rc2文件&#xff1b; 点击 资源视图 的tab&#xff0c;或者双击 .rc2 文件名&#xff0c;就会转到如下图的资源视图&#xff1b;然后展…

Redis(十三)缓存双写一致性策略

文章目录 概述示例 缓存双写一致性缓存按照操作来分&#xff0c;细分2种读写缓存&#xff1a;同步直写策略读写缓存&#xff1a;异步缓写策略双检加锁策略 数据库和缓存一致性更新策略先更新数据库&#xff0c;再更新缓存先更新缓存&#xff0c;再更新数据库先删除缓存&#xf…

大模型工作方法论

这是去年探索大模型留下的一些有效工作方法论&#xff0c;给大家分享出来。看懂着&#xff0c;一点就通&#xff1b;看不懂着&#xff0c;会老追问这到底是什么呀。 &#xff08;1&#xff09; 1、成功&#xff1a;成功才是成功之母&#xff0c;失败不是成功之母。老研究失败没…

网络选择流程分析(首选网络类型切换流程)

首先是界面,我在此平台的界面如下: 对应的入口源码位置在Settings的UniEnabledNetworkModePreferenceController中,当然其他平台可能在PreferredNetworkModePreferenceController中,流程上都是大同小异 然后点击切换按钮会调用到UniEnabledNetworkModePreferenceControlle…

Fink CDC数据同步(三)Flink集成Hive

1 目的 持久化元数据 Flink利用Hive的MetaStore作为持久化的Catalog&#xff0c;我们可通过HiveCatalog将不同会话中的 Flink元数据存储到Hive Metastore 中。 利用 Flink 来读写 Hive 的表 Flink打通了与Hive的集成&#xff0c;如同使用SparkSQL或者Impala操作Hive中的数据…

4、ChatGPT 无法完成的 5 项编码任务

ChatGPT 无法完成的 5 项编码任务 这是 ChatGPT 不能做的事情的一个清单,但这并非详尽无遗。ChatGPT 可以从头开始生成相当不错的代码,但是它不能取代你的工作。 我喜欢将 ChatGPT 视为 StackOverflow 的更智能版本。非常有帮助,但不会很快取代专业人士。当 ChatGPT 问世时…

远程主机可能不符合 glibc 和 libstdc++ Vs Code 服务器的先决条件

vscode连接远程主机报错&#xff0c;原因官方已经公布过了&#xff0c;需要远程主机 glibc>2.28&#xff0c;所以Ubuntu18及以下版本没法再远程连接了&#xff0c;其他Linux系统执行ldd --version查看glibc版本自行判断。 解决方案建议&#xff1a; 不要再想升级glibc了 问题…

少儿编程考级:智慧启迪还是智商税?

在当前科技日新月异的时代背景下&#xff0c;少儿编程教育日益受到家长和社会的广泛关注。与此同时&#xff0c;各类少儿编程考级应运而生&#xff0c;引发了公众对于其价值和意义的深度探讨。一部分人认为这是对孩子逻辑思维与创新能力的有效锻炼&#xff0c;是智慧启迪的重要…

WebGL+Three.js入门与实战——绘制水平移动的点、通过鼠标控制绘制(点击绘制、移动绘制、模拟画笔)

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1f4c3;个人状态&#xff1a; 研发工程师&#xff0c;现效力于中国工业软件事业 &#x1f680;人生格言&#xff1a; 积跬步…

C语言之找单身狗

个人主页&#xff08;找往期文章包括但不限于本期文章中不懂的知识点&#xff09;&#xff1a; 我要学编程(ಥ_ಥ)-CSDN博客 题目&#xff1a; 在一个整型数组中&#xff0c;只有一个数字出现一次&#xff0c;其他数组都是成对出现的&#xff0c;请找出那个只出现一次的数字。…

Python HTTP隧道在远程通信中的应用:穿越网络的“魔法门”

在这个数字化时代&#xff0c;远程通信就像是我们日常生活中的“魔法门”&#xff0c;让我们可以随时随地与远方的朋友、同事或服务器进行交流。而在这扇“魔法门”的背后&#xff0c;Python HTTP隧道技术发挥着举足轻重的作用。 想象一下&#xff0c;你坐在家里的沙发上&…

机器学习-梯度下降法

不是一个机器学习算法是一种基于搜索的最优化方法作用&#xff1a;最小化一个损失函数梯度上升法&#xff1a;最大化一个效用函数 并不是所有函数都有唯一的极值点 解决方法&#xff1a; 多次运行&#xff0c;随机化初始点梯度下降法的初始点也是一个超参数 代码演示 impor…

【python】绘制爱心图案

以下是一个简单的Python代码示例&#xff0c;它使用turtle模块绘制一个代表爱和情人节的心形图案。 首先&#xff0c;请确保计算机上安装了Python和turtle模块。然后&#xff0c;将以下代码保存到一个.py文件中&#xff0c;运行它就可以看到爱心图案的绘制过程。 import turt…