拿捏循环链表

目录:

一:单链表(不带头单向不循环)与循环链表(带头双向循环)区别

二:循环链表初始化

三:循环链表头插

四:循环链表尾插

五:循环链表头删

六:循环链表尾删

七:循环链表查找

八:循环链表指定pos  位置的删除

九:循环链表指定pos  位置之前的插入

十:循环链表销毁

十一:结语


1:单链表(不带头单向不循环)与循环链表(带头双向循环)区别
1)结构上

循环链表多了给 前驱指针 pre 

2)链表增删查改

有了pre这个指针,效率大大提升

2:循环链表初始化

讲到初始化,这里主要就是对哨兵位 (暂时称为:phead)进行设置

注意:哨兵位只是占一个位置,并不存储任何有效的数据

循环链表初始状态是空的:phead 自己成环

 

 对应代码:

phead -> next = phead ;

phead -> pre  = phead ;

那么问题就来了,在设计这个初始化函数的时候用一级指针还是二级指针

想必,前期看过我的单链表的博客,自然会说二级指针呀:

 因为是对phead 这个指针进行改变所以是传二级指针。没毛病!不知道大家在做OJ题的时候,我们也涉及到对一级指针的改变,但是我们也可以返回这个一级指针,即可实现

ListNode* ListNodeInit()
{/*哨兵位:val 没有实际意义(自行赋值)初始化的目的就是对哨兵位进行设置因为整个接口都是用一级指针,若是初始化用二级指针有点不顺眼此函数返回哨兵位地址即可实现对哨兵位的初始化*/ListNode* phead = NULL;ListNode* newnode = (ListNode*)malloc(sizeof(ListNode));if (newnode == NULL){perror("malloc fail");return NULL;}phead = newnode;phead->val = -1;phead->pre = phead->next = phead;//够成环return phead;
}
3:循环链表头插

头插:即在哨兵位的后面进行头插(若是链表为空,此时的头插也即是尾插)

头插分析:显然我们只需改变指针走向即可

注意指针先后问题

 各位老铁康康这样的代码是否之正确:

phead-> next = newnode;

newnode-> next = phead-> next;

newnode-> pre = phead;

newnode->next-> pre = newnode;

 

此代码结合画图,来看, 显然这样是不对的,因为newnode-> next = phead-> next;这句代码让newnode 这个节点自己成环了,所以又怎么可能头插进去呢?

实质性原因是:当我们头插进来newnode 时,应该先执行

newnode-> next = phead->next;   //注意指针先后问题

phead->next->pre = newnode; //让原来头结点的 pre 指向newndoe

newnode-> pre = phead;

phead-> next = newnode;

	ListNode* newnode = BuyNode(x);newnode->next = phead->next;newnode->pre = phead;phead->next->pre = newnode;//原来第一个节点pre与新的头结点连接phead->next = newnode;//新的头结点

对于以上问题还可以这样解决:定义一个 next指针来保留一下原来的头结点

4:循环链表尾插

尾差之前我们需要先思考一个问题:对于单链表(不循环,不带头,单向)而言,每次尾插之前都需要遍历链表,来找尾结点

但是对于循环链表而言我们就不需要:找尾结点直接一步到位  phead-> pre

真的是没有对比就没有伤害,所以在这块,咱循环链表还是比较好搞滴

尾插分析:

 这里只需改变指针走向即可

代码:

void ListNodePushBack(ListNode* phead,DataType x)
{assert(phead);/*1:找尾结点 phead->pre2:指针连接 */ListNode* newnode = BuyNode(x);newnode->next = phead;newnode->pre = phead->pre;phead->pre->next = newnode;//原来尾结点与newnode进行连接phead->pre = newnode;//新的尾结点}
5:循环链表头删

依然如此,按照“国际惯例”:找头结点  phead -> next 

删除之前先保留一下 第二个节点  

当把链表所以节点删除后(除哨兵位),会自动保存一个循环链表

 代码见下:

void ListNodePopFront(ListNode* phead)
{assert(phead->next != phead);//不相等说明不为空ListNode* newFirst = phead->next->next;newFirst->pre = phead;phead->next = newFirst;//成为新的头结点//以下写法也对,但可读性差phead->next = phead->next->next;phead->next->pre = phead;}
6:循环链表尾删

 既然谈到尾删,咱这里不得不提一嘴,单链表的尾删

单链表尾删逻辑:

1:链表不为空

2:只有一个节点:传二级指针

3:多个节点:传一级指针

4:找尾结点: 条件 tail -> next != NULL;

 咱就是说,是不是事很多。

相比较之下,循环链表就比较友好:找啥尾结点,直接一步到位  phead-> pre

直接改变指针走向即可。

老问题:保留一下尾结点的前一个节点 tailPre

void ListNodePopBack(ListNode* phead)
{assert(phead);/*空链表: 1:找尾结点 phead->pre2:成环:  改变新的尾结点与phead 直接的链接*/assert(phead->next != phead);//不相等说明链表不为空,为空不能删除ListNode* tail = phead->pre;ListNode* tailPre = tail->pre;phead->pre = tailPre;//新的尾结点tailPre->next = phead;free(tail);
}
7:循环链表查找

此函数可以实现2个功能:一个是查找;另一个是修改

逻辑:按值查找,若是存在,直接返回当前节点,否则返回 NULL

注意是从 第一个节点开始 而不是从哨兵位 开始

ListNode* Find(ListNode* phead, DataType x) //指定数据查找
{/*从第一个节点开始查找: phead->next依次遍历,若是存在返回节点否则返回NULL*/assert(phead);ListNode* cur = phead->next;while (cur != phead )  //phead 是哨兵位{if (x == cur->val){return cur;}cur = cur->next;}return NULL;//没有找到
}
8:循环链表指定pos  位置的删除

这个接口的逻辑其实说白了与尾删没啥不同

注意:pos 这个节点是查找函数返回的

void ListNodeErase(ListNode* pos)//指定位置删除  pos是查找函数返回的
{assert(pos);ListNode* posPre = pos->pre;ListNode* posNext = pos->next;posPre->next = posNext;posNext->pre = posPre;free(pos);
}
9:循环链表指定pos  位置之前的插入

void ListNodeInsert(ListNode* pos, DataType x)//指定位置之前插入
{/*1:找到pos 前一个节点  pos->pre2:注意避免节点找不到3:改变指针连接: posPre,newnode,pos*/assert(pos);//为空直接不玩了ListNode* newnode = BuyNode(x);ListNode* posPre = pos->pre;posPre->next = newnode;newnode->pre = posPre;newnode->next = pos;pos->pre = newnode;}
10:循环链表销毁

这里的销毁就是一个节点一个节点进行删除

注意:包括哨兵位在内

void ListNodeDestroy(ListNode* phead)
{/*注意哨兵位也需要删除一个节点一个节点删除*/assert(phead);ListNode* cur = phead->next;while (cur != phead){ListNode* next = cur->next;free(cur);cur = next;}free(phead);
}

 各位老铁们,别走开,接下来的问题你值得一看,或许哪天自己面试会遇到类似问题呢?

 前段时间看到过样一个问题:

有个求职者去面试:在他的简历上写着自己是比较熟练数据结构这个模块的。

面试官问了这样一个问题:你能否在10分钟之内,搞一个链表出来?

听到这,求职者心里多多少少是有点担忧“搞,是没有问题,但是这个时间能否在宽裕点……”

进过这种协商,时间定在15分钟

对于这个问题的答卷:很显然,这个求职者没有拿到100分

屏幕前的各位铁子们,假设你是那个求职者,你又会如何回答好这份答卷?

是的,要是我,我一定会用循环链表来搞呀(因为面试官有没有指定具体是8中链表的哪一种)

你仔细想想:循环链表效率多高呀

对于一个链表的基本操作无非不就是:

头删头插

尾删,尾插

任意位置的插入和删除

不知道你是否考虑过这样问题:

循环链表的尾插,头插其实就是任意位置插入的一个特例

尾删,头删其实就是任意位置的删除的一个特例

 完整代码如下:
DList.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"List.h"
void ListNodePrint(ListNode* phead)
{assert(phead);ListNode* cur = phead->next;printf("guard<==>");while (cur != phead){printf("%d<==>", cur->val);cur = cur->next;}printf("\n");
}
ListNode* ListNodeInit()
{/*哨兵位:val 没有实际意义(自行赋值)初始化的目的就是对哨兵位进行设置因为整个接口都是用一级指针,若是初始化用二级指针有点不顺眼此函数返回哨兵位地址即可实现对哨兵位的初始化*/ListNode* phead = NULL;ListNode* newnode = (ListNode*)malloc(sizeof(ListNode));if (newnode == NULL){perror("malloc fail");return NULL;}phead = newnode;phead->val = -1;phead->pre = phead->next = phead;//够成环return phead;
}ListNode* BuyNode(DataType x)
{ListNode* newnode = (ListNode*)malloc(sizeof(ListNode));if (newnode == NULL){perror("malloc fail");return NULL;}newnode->val = x;newnode->next = NULL;newnode->pre = NULL;return newnode;
}
void ListNodePushBack(ListNode* phead,DataType x)
{assert(phead);/*1:找尾结点 phead->pre2:指针连接 *///ListNode* newnode = BuyNode(x);//newnode->next = phead;//newnode->pre = phead->pre;//phead->pre->next = newnode;//原来尾结点与newnode进行连接//phead->pre = newnode;//新的尾结点ListNodeInsert(phead, x);//注意ListNodeInsert  这个函数功能是在pos 之前插入,所以要想实现尾插,需要传phead ,而不是phead->pre }
void ListNodePushFront(ListNode* phead, DataType x)
{/*注意phead不是头结点(第一个节点),phead 只是一个哨兵位,只占位置第一个节点:phead->next考虑指针先后问题,避免找不到第一个节点(链表不为空)*/assert(phead);//ListNode* newnode = BuyNode(x);//newnode->next = phead->next;//newnode->pre = phead;//phead->next = newnode;//新的头结点以上代码不对//ListNode* newnode = BuyNode(x);//newnode->next = phead->next;//newnode->pre = phead;//phead->next->pre = newnode;//原来第一个节点pre与新的头结点连接//phead->next = newnode;//新的头结点ListNodeInsert(phead->next, x);}void ListNodePopBack(ListNode* phead)
{assert(phead);/*空链表: 1:找尾结点 phead->pre2:成环:  改变新的尾结点与phead 直接的链接*/assert(phead->next != phead);//不相等说明链表不为空,为空不能删除ListNodeErase(phead->pre);//ListNode* tail = phead->pre;//ListNode* tailPre = tail->pre;//phead->pre = tailPre;//新的尾结点//   tailPre->next = phead;//free(tail);
}
void ListNodePopFront(ListNode* phead)
{assert(phead->next != phead);//不相等说明不为空ListNodeErase(phead->next);//ListNode* newFirst = phead->next->next;//newFirst->pre = phead;//phead->next = newFirst;//成为新的头结点以下写法也对,但可读性差//phead->next = phead->next->next;//phead->next->pre = phead;}
ListNode* Find(ListNode* phead, DataType x) //指定数据查找
{/*从第一个节点开始查找: phead->next依次遍历,若是存在返回节点否则返回NULL*/assert(phead);ListNode* cur = phead->next;while (cur != phead )  //phead 是哨兵位{if (x == cur->val){return cur;}cur = cur->next;}return NULL;//没有找到
}void ListNodeInsert(ListNode* pos, DataType x)//指定位置之前插入
{/*1:找到pos 前一个节点  pos->pre2:注意避免节点找不到3:改变指针连接: posPre,newnode,pos*/assert(pos);//为空直接不玩了ListNode* newnode = BuyNode(x);ListNode* posPre = pos->pre;posPre->next = newnode;newnode->pre = posPre;newnode->next = pos;pos->pre = newnode;}void ListNodeErase(ListNode* pos)//指定位置删除  pos是查找函数返回的
{assert(pos);ListNode* posPre = pos->pre;ListNode* posNext = pos->next;posPre->next = posNext;posNext->pre = posPre;free(pos);
}
void ListNodeDestroy(ListNode* phead)
{/*注意哨兵位也需要删除一个节点一个节点删除*/assert(phead);ListNode* cur = phead->next;while (cur != phead){ListNode* next = cur->next;free(cur);cur = next;}free(phead);
}
DList.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>typedef int DataType;
typedef struct DListNode 
{DataType val;struct DListNode* next;struct DListNode* pre;//前驱指针}ListNode;
void  ListNodePrint(ListNode*phead);
ListNode* ListNodeInit();void ListNodePushBack(ListNode* phead,DataType x);
void ListNodePushFront(ListNode* phead, DataType x);void ListNodePopBack(ListNode* phead);
void ListNodePopFront(ListNode* phead);ListNode* Find(ListNode* phead,DataType x); //指定数据查找(此函数可以实现2个功能:查找 + 修改)void ListNodeInsert(ListNode* pos, DataType x);//指定位置之前插入,pos是查找函数返回的void ListNodeErase(ListNode* pos);//指定位置删除void ListNodeDestroy(ListNode* phead);
/*
面试题目: 10分钟之内写一个链表
注意:头删,尾删 都只是 ListNodeErase 这个函数一个特例
头插,尾插,同理,是ListNodeInsert 一个特例
所以 可以借用
*/
test.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"List.h"void TestPush()
{ListNode* plist = ListNodeInit();//ListNodeInit(&plist);//ListNodePushBack(plist, 1);//ListNodePushBack(plist, 2);//ListNodePushBack(plist, 3);ListNodePushFront(plist, 1);ListNodePushFront(plist, 2);ListNodePushFront(plist, 3);ListNodePushFront(plist, 4);ListNodePushFront(plist, 5);ListNodePushFront(plist, 6);ListNodePushFront(plist, 7);ListNodePrint(plist);ListNodePushBack(plist, 0);ListNodePrint(plist);ListNodeDestroy(plist);}
void TestPop()
{//ListNode* plist = (ListNode*)malloc(sizeof(ListNode));//if (plist == NULL)//	return;//plist->val = -1;//plist->next = plist;//plist->pre = plist;//等价于以下代码ListNode* plist = ListNodeInit();ListNodePushBack(plist, 1);ListNodePushBack(plist, 2);ListNodePushBack(plist, 3);ListNodePrint(plist);//ListNodePopFront(plist);//ListNodePrint(plist);//ListNodePopFront(plist);//ListNodePrint(plist);//ListNodePopFront(plist);//ListNodePrint(plist);ListNodePopBack(plist);ListNodePrint(plist);ListNodePopBack(plist);ListNodePrint(plist);ListNodePopBack(plist);ListNodePrint(plist);ListNodeDestroy(plist);}
void Test()
{ListNode* plist = ListNodeInit();ListNodePushBack(plist, 1);ListNodePushBack(plist, 2);ListNodePushBack(plist, 3);ListNode* pos = Find(plist, 3);if (pos != NULL){ListNodeInsert(pos, 10);ListNodePrint(plist);}else{printf("操作失败\n");}ListNodeDestroy(plist);}void Test1()
{ListNode* plist = ListNodeInit();ListNodePushBack(plist, 1);ListNodePushBack(plist, 2);ListNodePushBack(plist, 3);ListNode* pos = Find(plist, 3);if (pos != NULL){ListNodeErase(pos);ListNodePrint(plist);}else{printf("操作失败\n");}ListNodeDestroy(plist);}int main()
{TestPush();//TestPop();//Test();//Test1();return 0;
}
11:结语

以上就是我今日要为大家share的内容。其实说白了,循环链表的结构看似复杂,实际操作起来,非常简单。(就是多了一个 pre这样的一个前驱指针)。希望各位老铁们能够从这篇博客中学到一些知识,同时欢迎大家随时指正,那咱话不多说,你懂滴!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/253436.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何保持mac苹果电脑系统在最佳状态?不卡顿

苹果电脑一直以其卓越的性能和用户友好的操作系统而备受欢迎。然而电脑上的文件、应用程序和缓存可能会逐渐积累&#xff0c;导致性能下降。为了确保你的苹果电脑保持最佳状态&#xff0c;高效清理是至关重要的一步。在本文中&#xff0c;我们将分享一些如何清理苹果电脑更高效…

Sping Cloud Hystrix 参数配置、简单使用、DashBoard

Sping Cloud Hystrix 文章目录 Sping Cloud Hystrix一、Hystrix 服务降级二、Hystrix使用示例三、OpenFeign Hystrix四、Hystrix参数HystrixCommand.Setter核心参数Command PropertiesFallback降级配置Circuit Breaker 熔断器配置Metrix 健康统计配置Request Context 相关参数C…

基于spring boot实现邮箱发送和邮箱验证

目录 一、邮箱发送实现1. 开通邮箱服务2. 添加邮箱依赖3.添加配置4.添加邮箱通用类5. 测试类 二、邮箱验证实现1.添加依赖2. 添加配置3.添加controller4. 测试 项目地址: https://gitee.com/nssnail/springboot-email 一、邮箱发送实现 1. 开通邮箱服务 使用qq邮箱、163邮箱都…

[UI5 常用控件] 06.Splitter,ResponsiveSplitter

文章目录 前言1. Splitter1.1 属性 2. ResponsiveSplitter 前言 本章节记录常用控件Splitter,ResponsiveSplitter。主要功能是分割画面布局。 其路径分别是&#xff1a; sap.ui.layout.Splittersap.ui.layout.ResponsiveSplitter 1. Splitter 1.1 属性 orientation &#x…

【力扣】快乐数,哈希集合+快慢指针+数学

快乐数原题地址 方法一&#xff1a;哈希集合 定义函数getNext(n)&#xff0c;返回n的所有位的平方和。一直执行ngetNext(n)&#xff0c;最终只有2种可能&#xff1a; n停留在1。无限循环且不为1。 证明&#xff1a;情况1是存在的&#xff0c;如力扣的示例一&#xff1a; 接…

正点原子--STM32基本定时器学习笔记(1)

目录 1. 定时器概述 1.1 软件定时原理 1.2 定时器定时原理 1.3 定时器分类 1.4 定时器特性表 1.5 基本、通用、高级定时器的功能整体区别 2. 基本定时器简介 3. 基本定时器框图 时钟树分析 这部分是笔者对基本定时器的理论知识进行学习与总结&#xff01;主要记录学习…

【PyTorch][chapter 15][李宏毅深度学习][Neighbor Embedding-LLE]

前言&#xff1a; 前面讲的都是线性降维&#xff0c;本篇主要讨论一下非线性降维. 流形学习&#xff08;mainfold learning&#xff09;是一类借鉴了拓扑流行概念的降维方法. 如上图,欧式距离上面 A 点跟C点更近&#xff0c;距离B 点较远 但是从图形拓扑结构来看&#xff0c; …

算法学习——华为机考题库10(HJ64 - HJ69)

算法学习——华为机考题库10&#xff08;HJ64 - HJ69&#xff09; HJ64 MP3光标位置 描述 MP3 Player因为屏幕较小&#xff0c;显示歌曲列表的时候每屏只能显示几首歌曲&#xff0c;用户要通过上下键才能浏览所有的歌曲。为了简化处理&#xff0c;假设每屏只能显示4首歌曲&a…

C#,字符串相似度的莱文斯坦距离(Levenshtein Distance)算法与源代码

一、莱文斯坦&#xff08;Levenshtein&#xff09; Vladimir I. Levenshtein 弗拉基米尔I列文施坦博士是纠错码理论的先驱&#xff0c;被称为俄罗斯编码理论之父。Levenshtein是莫斯科俄罗斯科学院Keldysh应用数学研究所的研究教授&#xff0c;他的贡献体现在消费者的日常生活中…

蓝桥杯刷题day08——完全日期

1、题目描述 如果一个日期中年月日的各位数字之和是完全平方数&#xff0c;则称为一个完全日期。 例如&#xff1a;2021年6月5日的各位数字之和为20216516&#xff0c;而16是一个完全平方数&#xff0c;它是4的平方。所以2021年6月5日是一个完全日期。 请问&#xff0c;从200…

vue对于安装依赖时不好习惯的反省

因为一个不好的习惯&#xff0c;我总是喜欢–save去安装依赖包&#xff0c;然后发现最后打包后的内容总是很大。就想着怎么能让包小一些&#xff0c;就发现我遗漏了vue安装依赖的一个小知识点 安装依赖的时候可以-s -d -g去安装&#xff0c;要根据使用的内容选择去安装&#xf…

人工智能 | 深度学习的进展

深度学习的进展 深度学习是人工智能领域的一个重要分支&#xff0c;它利用神经网络模拟人类大脑的学习过程&#xff0c;通过大量数据训练模型&#xff0c;使其能够自动提取特征、识别模式、进行分类和预测等任务。近年来&#xff0c;深度学习在多个领域取得了显著的进展&#…

【高阶数据结构】B-树详解

文章目录 1. 常见的搜索结构2. 问题提出使用平衡二叉树搜索树的缺陷使用哈希表的缺陷 3. B-树的概念4. B-树的插入分析插入过程分析插入过程总结 5. B-树的代码实现5.1 B-树的结点设计5.2 B-树的查找5.3 B-树的插入实现InsertKey插入和分裂测试 6. B-树的删除&#xff08;思想&…

Redis 命令大全

文章目录 启动与连接Key&#xff08;键&#xff09;相关命令String&#xff08;字符串&#xff09;Hash&#xff08;哈希&#xff09;List&#xff08;列表&#xff09;Set&#xff08;集合&#xff09;Sorted Set&#xff08;有序集合&#xff09;其他常见命令HyperLogLog&…

WordPress如何实现随机显示一句话经典语录?怎么添加到评论框中?

我们在一些WordPress网站的顶部或侧边栏或评论框中&#xff0c;经常看到会随机显示一句经典语录&#xff0c;他们是怎么实现的呢&#xff1f; 其实&#xff0c;boke112百科前面跟大家分享的『WordPress集成一言&#xff08;Hitokoto&#xff09;API经典语句功能』一文中就提供…

相机图像质量研究(6)常见问题总结:光学结构对成像的影响--对焦距离

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…

Spring Data Envers 数据审计实战

随着各行各业信息化发展&#xff0c;决策者们越来越意识到数据版本追踪的重要性&#xff0c;尤其是上市公司&#xff0c;数据对于他们尤为重要。考虑到研发成本&#xff0c;对重要表单数据支持页面级的修改历史查看、对所有业务数据支持DB级的版本查看是一个不错的选择。 对于…

闲聊电脑(5)装个 Windows(一)

​夜深人静&#xff0c;万籁俱寂&#xff0c;老郭趴在电脑桌上打盹&#xff0c;桌子上的小黄鸭和桌子旁的冰箱又开始窃窃私语…… 小黄鸭&#xff1a;冰箱大哥&#xff0c;上次说到硬盘分区和格式化&#xff0c;弄完之后&#xff0c;就该装系统了吧&#xff1f; 冰箱&#x…

【iOS ARKit】人形遮挡

人形遮挡简介 在 AR系统中&#xff0c;计算机通过对设备摄像头采集的图像进行视觉处理和组织&#xff0c;建立起实景空间&#xff0c;然后将生成的虚拟对象依据几何一致性原理嵌入到实景空间中&#xff0c;形成虚实融合的增强现实环境&#xff0c;再输出到显示系统中呈现给使用…

华为配置内部人员接入WLAN网络示例(802.1X认证)

配置内部人员接入WLAN网络示例&#xff08;802.1X认证&#xff09; 组网图形 图1 配置802.1X认证组网图 业务需求组网需求数据规划配置思路配置注意事项操作步骤配置文件 业务需求 用户接入WLAN网络&#xff0c;使用802.1X客户端进行认证&#xff0c;输入正确的用户名和密…