Python中使用opencv-python库进行颜色检测

Python中使用opencv-python库进行颜色检测

之前写过一篇VC++中使用OpenCV进行颜色检测的博文,当然使用opencv-python库也可以实现。
在Python中使用opencv-python库进行颜色检测非常简单,首选读取一张彩色图像,并调用函数imgHSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV);函数将原图img转换成HSV图像imgHSV,再设置好HSV三个分量的上限和下限值,调用inRange函数imask = cv2.inRange(imgHSV,lower,upper)将HSV色彩图像转换成掩码图,掩码图中只有黑白二值图像,从而达到颜色检测的目的。颜色检测通常可以用于物体检测和跟踪中,尤其在不同的图像和物体中根据特定的颜色去筛选出某个物体。

通过学习油管博主murtazahassan的视频LEARN OPENCV in 3 HOURS with Python | Including 3xProjects | Computer Vision,里面第7个OpenCV示例将到如何从一副兰博基尼的轿车图像中进行颜色检测,相关代码地址为:Learn-OpenCV-in-3-hours
/chapter7.py
如下所示:

import cv2
import numpy as npdef empty(a):passdef stackImages(scale,imgArray):rows = len(imgArray)cols = len(imgArray[0])rowsAvailable = isinstance(imgArray[0], list)width = imgArray[0][0].shape[1]height = imgArray[0][0].shape[0]if rowsAvailable:for x in range ( 0, rows):for y in range(0, cols):if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)else:imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)imageBlank = np.zeros((height, width, 3), np.uint8)hor = [imageBlank]*rowshor_con = [imageBlank]*rowsfor x in range(0, rows):hor[x] = np.hstack(imgArray[x])ver = np.vstack(hor)else:for x in range(0, rows):if imgArray[x].shape[:2] == imgArray[0].shape[:2]:imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)else:imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)hor= np.hstack(imgArray)ver = horreturn verpath = 'Resources/lambo.png'
cv2.namedWindow("TrackBars")
cv2.resizeWindow("TrackBars",640,240)
cv2.createTrackbar("Hue Min","TrackBars",0,179,empty)
cv2.createTrackbar("Hue Max","TrackBars",19,179,empty)
cv2.createTrackbar("Sat Min","TrackBars",110,255,empty)
cv2.createTrackbar("Sat Max","TrackBars",240,255,empty)
cv2.createTrackbar("Val Min","TrackBars",153,255,empty)
cv2.createTrackbar("Val Max","TrackBars",255,255,empty)while True:img = cv2.imread(path)imgHSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)h_min = cv2.getTrackbarPos("Hue Min","TrackBars")h_max = cv2.getTrackbarPos("Hue Max", "TrackBars")s_min = cv2.getTrackbarPos("Sat Min", "TrackBars")s_max = cv2.getTrackbarPos("Sat Max", "TrackBars")v_min = cv2.getTrackbarPos("Val Min", "TrackBars")v_max = cv2.getTrackbarPos("Val Max", "TrackBars")print(h_min,h_max,s_min,s_max,v_min,v_max)lower = np.array([h_min,s_min,v_min])upper = np.array([h_max,s_max,v_max])mask = cv2.inRange(imgHSV,lower,upper)imgResult = cv2.bitwise_and(img,img,mask=mask)# cv2.imshow("Original",img)# cv2.imshow("HSV",imgHSV)# cv2.imshow("Mask", mask)# cv2.imshow("Result", imgResult)imgStack = stackImages(0.6,([img,imgHSV],[mask,imgResult]))cv2.imshow("Stacked Images", imgStack)cv2.waitKey(1)

代码示例和运行结果

import cv2
import numpy as np"""
@param scale: 图像缩放比例系数
@param imgArray: 二维图像数组
"""
def stackImages(scale,imgArray):rows = len(imgArray)cols = len(imgArray[0])rowsAvailable = isinstance(imgArray[0], list)width = imgArray[0][0].shape[1]height = imgArray[0][0].shape[0]if rowsAvailable:for x in range ( 0, rows):for y in range(0, cols):if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)else:imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)imageBlank = np.zeros((height, width, 3), np.uint8)hor = [imageBlank]*rowshor_con = [imageBlank]*rowsfor x in range(0, rows):hor[x] = np.hstack(imgArray[x])ver = np.vstack(hor)else:for x in range(0, rows):if imgArray[x].shape[:2] == imgArray[0].shape[:2]:imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)else:imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)hor= np.hstack(imgArray)ver = horreturn ver# 进度条回调函数
"""
@param val: 用户选择的当前进度条的数值
"""
def onValueChanged(val):# print("val: ", val)pass# 颜色检测
path = "Resources/lambo.png"
cv2.namedWindow("TrackBars")
cv2.resizeWindow("TrackBars", 640, 240) # 创建一个宽为640,高为200的,窗口名称为Trackbars的窗口
# 在窗口名称为Trackbars的窗口中创建一个名为Hue Min的滑动条,最小值默认为0,最大值为179,滑动条所在值即为hmin,用来控制H分量的最小值
cv2.createTrackbar("Hue Min", "TrackBars", 0, 179, onValueChanged)
# 在窗口名称为Trackbars的窗口中创建一个名为Hue Max的滑动条,最小值默认为0,最大值为179,滑动条所在值即为hmax,用来控制H分量的最大值
cv2.createTrackbar("Hue Max", "TrackBars", 19, 179, onValueChanged)
# 在窗口名称为Trackbars的窗口中创建一个名为Sat Min的滑动条,最小值默认为0,最大值为255,滑动条所在值即为smin,用来控制S分量的最小值
cv2.createTrackbar("Sat Min", "TrackBars", 110, 255, onValueChanged)
# 在窗口名称为Trackbars的窗口中创建一个名为Sat Max的滑动条,最小值默认为0,最大值为255,滑动条所在值即为smax,用来控制S分量的最大值
cv2.createTrackbar("Sat Max", "TrackBars", 240, 255, onValueChanged)
# 在窗口名称为Trackbars的窗口中创建一个名为Val Min的滑动条,最小值默认为0,最大值为255,滑动条所在值即为vmin,用来控制V分量的最小值
cv2.createTrackbar("Val Min", "TrackBars", 153, 255, onValueChanged)
# 在窗口名称为Trackbars的窗口中创建一个名为Val Max的滑动条,最小值默认为0,最大值为255,滑动条所在值即为vmax,用来控制V分量的最大值
cv2.createTrackbar("Val Max", "TrackBars", 255, 255, onValueChanged)# 循环检测用户操作,用户可以通过Trackbars窗口中的滑动条分别控制H、S、V三个分量的最小和最大值,从而控制mask以及Result图像的最终呈现
while True:img = cv2.imread(path)imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)h_min = cv2.getTrackbarPos("Hue Min", "TrackBars")h_max = cv2.getTrackbarPos("Hue Max", "TrackBars")s_min = cv2.getTrackbarPos("Sat Min", "TrackBars")s_max = cv2.getTrackbarPos("Sat Max", "TrackBars")v_min = cv2.getTrackbarPos("Val Min", "TrackBars")v_max = cv2.getTrackbarPos("Val Max", "TrackBars")print(h_min, h_max, s_min, s_max, v_min, v_max)lower = np.array([h_min, s_min, v_min])upper = np.array([h_max, s_max, v_max])mask = cv2.inRange(imgHSV, lower, upper)    # 根据lower和upper以及imgHSV图像生成mask图像imgResult = cv2.bitwise_and(img, img, mask=mask)# cv2.imshow("Original", img)# cv2.imshow("HSV", imgHSV)# cv2.imshow("Mask", mask)# cv2.imshow("Result", imgResult)imgStack = stackImages(0.6, ([img, imgHSV], [mask, imgResult]))cv2.imshow("Stacked Images", imgStack)cv2.waitKey(1)
cv2.destroyAllWindows()

运行结果如下图所示:
颜色检测运行结果

使用matplotlib库将多幅图像在一张图上显示

当然我们可以替换掉上面的stackImages(scale,imgArray),借助matplotlib`库将多幅图像在一张图上显示,相应的代码如下:

import cv2
import numpy as np
from matplotlib import pyplot as plt# 进度条回调函数
"""
@param val: 用户选择的当前进度条的数值
"""
def onValueChanged(val):# print("val: ", val)pass# 颜色检测
path = "Resources/lambo.png"
cv2.namedWindow("TrackBars")
cv2.resizeWindow("TrackBars", 640, 240) # 创建一个宽为640,高为200的,窗口名称为Trackbars的窗口
# 在窗口名称为Trackbars的窗口中创建一个名为Hue Min的滑动条,最小值默认为0,最大值为179,滑动条所在值即为hmin,用来控制H分量的最小值
cv2.createTrackbar("Hue Min", "TrackBars", 0, 179, onValueChanged)
# 在窗口名称为Trackbars的窗口中创建一个名为Hue Max的滑动条,最小值默认为0,最大值为179,滑动条所在值即为hmax,用来控制H分量的最大值
cv2.createTrackbar("Hue Max", "TrackBars", 19, 179, onValueChanged)
# 在窗口名称为Trackbars的窗口中创建一个名为Sat Min的滑动条,最小值默认为0,最大值为255,滑动条所在值即为smin,用来控制S分量的最小值
cv2.createTrackbar("Sat Min", "TrackBars", 110, 255, onValueChanged)
# 在窗口名称为Trackbars的窗口中创建一个名为Sat Max的滑动条,最小值默认为0,最大值为255,滑动条所在值即为smax,用来控制S分量的最大值
cv2.createTrackbar("Sat Max", "TrackBars", 240, 255, onValueChanged)
# 在窗口名称为Trackbars的窗口中创建一个名为Val Min的滑动条,最小值默认为0,最大值为255,滑动条所在值即为vmin,用来控制V分量的最小值
cv2.createTrackbar("Val Min", "TrackBars", 153, 255, onValueChanged)
# 在窗口名称为Trackbars的窗口中创建一个名为Val Max的滑动条,最小值默认为0,最大值为255,滑动条所在值即为vmax,用来控制V分量的最大值
cv2.createTrackbar("Val Max", "TrackBars", 255, 255, onValueChanged)# 循环检测用户操作,用户可以通过Trackbars窗口中的滑动条分别控制H、S、V三个分量的最小和最大值,从而控制mask以及Result图像的最终呈现
while True:img = cv2.imread(path)imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)h_min = cv2.getTrackbarPos("Hue Min", "TrackBars")h_max = cv2.getTrackbarPos("Hue Max", "TrackBars")s_min = cv2.getTrackbarPos("Sat Min", "TrackBars")s_max = cv2.getTrackbarPos("Sat Max", "TrackBars")v_min = cv2.getTrackbarPos("Val Min", "TrackBars")v_max = cv2.getTrackbarPos("Val Max", "TrackBars")print(h_min, h_max, s_min, s_max, v_min, v_max)lower = np.array([h_min, s_min, v_min])upper = np.array([h_max, s_max, v_max])imgMask = cv2.inRange(imgHSV, lower, upper)    # 根据lower和upper以及imgHSV图像生成mask图像imgResult = cv2.bitwise_and(img, img, mask=imgMask)# cv2.imshow("Original", img)# cv2.imshow("HSV", imgHSV)# cv2.imshow("Mask", mask)# cv2.imshow("Result", imgResult)plt.figure(figsize=(8, 6))plt.subplot(221), plt.axis('off'), plt.title("1.Original Image")plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))plt.subplot(222), plt.axis("off"), plt.title("2.HSV Image")plt.imshow(cv2.cvtColor(imgHSV, cv2.COLOR_BGR2RGB))plt.subplot(223), plt.axis("off"), plt.title("3.Mask Image")plt.imshow(cv2.cvtColor(imgMask, cv2.COLOR_BGR2RGB))plt.subplot(224), plt.axis("off"), plt.title("4.Result Image")# plt.imshow(imgResult)plt.imshow(cv2.cvtColor(imgResult, cv2.COLOR_BGR2RGB))plt.tight_layout()plt.show()cv2.waitKey(1)
cv2.destroyAllWindows()

VScode中运行结果如下图所示:
VSCode运行结果2
注意由于python-opencv中彩色图像默认是BGRmatplotlib库中默认是RGB,所以使用matplotlib库显示图像时,需要对原图像(BGR)使用cv2.cvtColor(img, cv2.COLOR_BGR2RGB)函数进行转换,不然图像显示不正确。如下图所示:
颜色不对

参考资料

  • HSL和HSV色彩空间
  • OpenCV—HSV色彩空间基础知识
  • 三分钟带你快速学习RGB、HSV和HSL颜色空间
  • Learn-OpenCV-in-3-hours Python Video
  • Learn-OpenCV-in-3-hours
  • Learn-OpenCV-cpp-in-4-Hours C++ Video
  • https://github.com/murtazahassan/Learn-OpenCV-cpp-in-4-Hours
  • https://github.com/murtazahassan

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/254820.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《低功耗方法学》翻译——附录B:UPF命令语法

附录B:UPF命令语法 本章介绍了文本中引用的所选UPF命令的语法。 节选自“统一电源格式(UPF)标准,1.0版”,经该Accellera许可复制。版权所有:(c)2006-2007。Accellera不声明或代表摘录材料的准确性或内容&…

Qt程序设计-导出PDF

本文讲解如何实现导出PDF,包含如何使用HTML格式和添加图片。 实例如下: 创建项目,添加两个按钮,并在D盘提前准备好图片。 窗体的头文件 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow>#include <QPrinter> #include <QPainter> #i…

CDN相关和HTTP代理

CDN相关和HTTP代理 参考&#xff1a; 《透视 HTTP 协议》——chrono 把这两个放在一起是因为容易搞混&#xff0c;我一开始总以为CDN就是HTTP代理&#xff0c;但是看了极客时间里透视HTTP协议的讲解&#xff0c;感觉又不仅于此&#xff0c;于是专门写下来。 先说结论&#xf…

ChatGPT 变懒最新解释!或和系统Prompt太长有关

大家好我是二狗。 ChatGPT变懒这件事又有了最新解释了。 这两天&#xff0c;推特用户Dylan Patel发文表示&#xff1a; 你想知道为什么 ChatGPT 和 6 个月前相比会如此糟糕吗&#xff1f; 那是因为ChatGPT系统Prompt是竟然包含1700 tokens&#xff0c;看看这个prompt里面有多…

在 VMware 虚拟机上安装 CentOS系统 完整(全图文)教程

一、前期准备&#xff1a; 1.安装VMware 虚拟机软件&#xff08;不在讲解&#xff0c;可自行去下载安装&#xff09;。官网&#xff1a;https://customerconnect.vmware.com/cn/downloads/details?downloadGroupWKST-PLAYER-1750&productId1377&rPId111471 2.下载iso…

JMeter使用教程

作为一名开发工程师&#xff0c;当我们接到需求的时候&#xff0c;一般就是分析需要&#xff0c;确定思路&#xff0c;编码&#xff0c;自测&#xff0c;然后就可以让测试人员去测试了。在自测这一步&#xff0c;作为开发人员&#xff0c;很多时候就是测一下业务流程是否正确&a…

blender几何节点中样条线参数中的系数(factor)是个什么概念?

一根样条线&#xff0c;通常由两个及以上的控制点构成。 每个控制点的系数&#xff0c;其实相当于该点处位于整个样条线的比值。 如图&#xff0c;一根样条线有十一个控制点。相当于把它分成了十段&#xff0c;那每一段可以看到x、y都是0&#xff0c;唯独z每次增加0.1&#xff…

【Godot4.2】文件系统自定义控件 - FileSystemTree

FileSystemTree B站【Godot4.2】文件系统自定义节点 - FileSystemTree 概述 在Godot设计编辑器插件或应用程序时&#xff0c;可能需要涉及文件系统的显示&#xff0c;比如文件夹或文件的树形列表。 我们可以用Godot的Tree控件快速书写相应的功能&#xff0c;但是为了复用到…

6.electron之上下文隔离,预加载JS脚本

如果可以实现记得点赞分享&#xff0c;谢谢老铁&#xff5e; Electron是一个使用 JavaScript、HTML 和 CSS 构建桌面应用程序的框架。 Electron 将 Chromium 和 Node.js 嵌入到了一个二进制文件中&#xff0c;因此它允许你仅需一个代码仓库&#xff0c;就可以撰写支持 Windows、…

Windows11安装运行Linux(Ubuntu)

一、安装windows支持 输入windows打开界面 选择虚拟机监控程序平台、适用于linux的子系统、虚拟机平台 在 Windows 系统中&#xff0c;"虚拟机平台"和"虚拟机监控程序平台"是两个与虚拟化相关的功能&#xff0c;但它们各自有着不同的作用和用途。 虚拟机…

JAVA设计模式之代理模式详解

代理模式 1 代理模式介绍 在软件开发中,由于一些原因,客户端不想或不能直接访问一个对象,此时可以通过一个称为"代理"的第三者来实现间接访问.该方案对应的设计模式被称为代理模式. 代理模式(Proxy Design Pattern ) 原始定义是&#xff1a;让你能够提供对象的替代…

IT行业针对大数据的安全文件传输的重要性

在数字化浪潮的推动下&#xff0c;数据已成为现代社会的宝贵资源。特别是大数据&#xff0c;以其海量、多样化、高速增长和低价值密度的特性&#xff0c;对信息技术&#xff08;IT&#xff09;行业产生了深远影响。大数据的应用不仅推动了云计算、物联网和人工智能等领域的发展…

Vuex介绍和使用

1. 什么是Vuex Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式和库。它解决了在大型 Vue.js 应用程序中共享和管理状态的问题&#xff0c;使得状态管理变得更加简单、可预测和可维护。 在 Vue.js 应用中&#xff0c;组件之间的通信可以通过 props 和事件进行&#xff0c…

University Program VWF仿真步骤__全加器

本教程将以全加器为例&#xff0c;选择DE2-115开发板的Cyclone IV EP4CE115F29C7 FPGA&#xff0c;使用Quartus Lite v18.1&#xff0c;循序渐进的介绍如何创建Quartus工程&#xff0c;并使用Quartus Prime软件的University Program VWF工具创建波形文件&#xff0c;对全加器的…

机器学习-线性回归法

线性回归算法 解决回归问题思想简单&#xff0c;实现容易许多强大的非线性模型的基础结果具有很好的可解释性蕴含机器学习中的很多重要思想 样本特征只有一个&#xff0c;称为&#xff1a;简单线性回归 通过分析问题&#xff0c;确定问题的损失函数或者效用函数 通过最优化…

UDP端口探活的那些细节

一 背景 商业客户反馈用categraf的net_response插件配置了udp探测, 遇到报错了&#xff0c;如图 udp是无连接的&#xff0c;无法用建立连接的形式判断端口。 插件最初的设计是需要配置udp的发送字符&#xff0c;并且配置期望返回的字符串&#xff0c; [[instances]] targets…

Java写标准输出进度条

学Java这么久了&#xff0c;突发奇想写一个 进度条 玩玩&#xff0c;下面展示一下成功吧&#xff01; Java代码实现如下 public class ProcessBar {public static void main(String[] args) {//进度条StringBuilder processBarnew StringBuilder();//进度条长度int total100;/…

2024.2.5 vscode连不上虚拟机,始终waiting for server log

昨天还好好的&#xff0c;吃着火锅&#xff0c;做着毕设&#xff0c;突然就被vscode给劫了。 起初&#xff0c;哥们跟着网上教程有模有样地删除了安装包缓存&#xff0c;还删除了.vscode-server&#xff0c;发现没卵用&#xff0c;之前都是搜那个弹窗报错。 后来发现原来是vsco…

问题:塑瓷后的牙冠要比完成的牙冠大() #学习方法#其他

问题&#xff1a;塑瓷后的牙冠要比完成的牙冠大&#xff08;&#xff09; A.10% B.10%-15% C.15%-20% D.20%-30% E.50% 参考答案如图所示

微软AD域替代方案,助力企业摆脱hw期间被攻击的窘境

在红蓝攻防演练&#xff08;hw行动&#xff09;中&#xff0c;AD域若被攻击成功&#xff0c;是其中一个扣分最多的一项内容。每年&#xff0c;宁盾都会接到大量AD在hw期间被攻击&#xff0c;甚至是被打穿的企业客户。过去&#xff0c;企业还会借助2FA双因子认证加强OA、Exchang…