AI助力农作物自动采摘,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建作番茄采摘场景下番茄成熟度检测识别计数分析系统

去年十一那会无意间刷到一个视频展示的就是德国机械收割机非常高效自动化地24小时不间断地在超广阔的土地上采摘各种作物,专家设计出来了很多用于采摘不同农作物的大型机械,看着非常震撼,但是我们国内农业的发展还是相对比较滞后的,小的时候拔草是一个人一列蹲在地里就在那埋头拔草,不知道什么时候才能走到地的尽头,小块的分散的土地太多基本上都是只能人工手工来取收割,大点的连片的土地可以用收割机来收割,不过收割机基本都是用来收割小麦的,最近几年好像老家也能看到用于收割玉米的机器了不过相对还是比较少的,玉米的收割我们基本上还是人工来收割的,不仅累效率还低遇上对玉米叶片过敏的就更要命了。。。。闲话就扯到这里了。

有时候经常在想我们的农业机械化自动化什么时候能再向前迈进一大步,回顾德国的工业机械,在视频展示的效果中,其实很关键的主要是两部分,一部分是机器视觉定位检测识别,另一部分是机械臂传动轴,两部分相互配合才能完成采摘工作,前文实践如下:

《AI助力农作物自动采摘,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建作物番茄采摘场景下番茄成熟度检测识别分析系统》

《AI助力农作物自动采摘,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建作物番茄采摘场景下番茄成熟度检测识别分析系统》

《AI助力农作物自动采摘,基于DETR(DEtection TRansformer)开发构建作物生产场景下番茄采摘检测计数分析系统》

《AI助力农作物自动采摘,基于DETR(DEtection TRansformer)开发构建番茄采摘场景下番茄成熟度检测识别计数分析系统》

本文的主要想法是想要基于YOLOv5全系列的不同参数量级的模型来开发构建用于番茄采摘场景下的番茄作物成熟度检测识别系统,首先看下实例效果:

本文是选择的是YOLOv5算法模型来完成本文项目的开发构建。相较于前两代的算法模型,YOLOv5可谓是集大成者,达到了SOTA的水平,下面简单对v3-v5系列模型的演变进行简单介绍总结方便对比分析学习:
【YOLOv3】
YOLOv3(You Only Look Once version 3)是一种基于深度学习的快速目标检测算法,由Joseph Redmon等人于2018年提出。它的核心技术原理和亮点如下:
技术原理:
YOLOv3采用单个神经网络模型来完成目标检测任务。与传统的目标检测方法不同,YOLOv3将目标检测问题转化为一个回归问题,通过卷积神经网络输出图像中存在的目标的边界框坐标和类别概率。
YOLOv3使用Darknet-53作为骨干网络,用来提取图像特征。检测头(detection head)负责将提取的特征映射到目标边界框和类别预测。
亮点:
YOLOv3在保持较高的检测精度的同时,能够实现非常快的检测速度。相较于一些基于候选区域的目标检测算法(如Faster R-CNN、SSD等),YOLOv3具有更高的实时性能。
YOLOv3对小目标和密集目标的检测效果较好,同时在大目标的检测精度上也有不错的表现。
YOLOv3具有较好的通用性和适应性,适用于各种目标检测任务,包括车辆检测、行人检测等。
【YOLOv4】
YOLOv4是一种实时目标检测模型,它在速度和准确度上都有显著的提高。相比于其前一代模型YOLOv3,YOLOv4在保持较高的检测精度的同时,还提高了检测速度。这主要得益于其采用的CSPDarknet53网络结构,主要有三个方面的优点:增强CNN的学习能力,使得在轻量化的同时保持准确性;降低计算瓶颈;降低内存成本。YOLOv4的目标检测策略采用的是“分而治之”的策略,将一张图片平均分成7×7个网格,每个网格分别负责预测中心点落在该网格内的目标。这种方法不需要额外再设计一个区域提议网络(RPN),从而减少了训练的负担。然而,尽管YOLOv4在许多方面都表现出色,但它仍然存在一些不足。例如,小目标检测效果较差。此外,当需要在资源受限的设备上部署像YOLOv4这样的大模型时,模型压缩是研究人员重新调整较大模型所需资源消耗的有用工具。
优点:
速度:YOLOv4 保持了 YOLO 算法一贯的实时性,能够在检测速度和精度之间实现良好的平衡。
精度:YOLOv4 采用了 CSPDarknet 和 PANet 两种先进的技术,提高了检测精度,特别是在检测小型物体方面有显著提升。
通用性:YOLOv4 适用于多种任务,如行人检测、车辆检测、人脸检测等,具有较高的通用性。
模块化设计:YOLOv4 中的组件可以方便地更换和扩展,便于进一步优化和适应不同场景。
缺点:
内存占用:YOLOv4 模型参数较多,因此需要较大的内存来存储和运行模型,这对于部分硬件设备来说可能是一个限制因素。
训练成本:YOLOv4 模型需要大量的训练数据和计算资源才能达到理想的性能,这可能导致训练成本较高。
精确度与速度的权衡:虽然 YOLOv4 在速度和精度之间取得了较好的平衡,但在极端情况下,例如检测高速移动的物体或复杂背景下的物体时,性能可能会受到影响。
误检和漏检:由于 YOLOv4 采用单一网络对整个图像进行预测,可能会导致一些误检和漏检现象。

【YOLOv5】
YOLOv5是一种快速、准确的目标检测模型,由Glen Darby于2020年提出。相较于前两代模型,YOLOv5集成了众多的tricks达到了性能的SOTA:
技术原理:
YOLOv5同样采用单个神经网络模型来完成目标检测任务,但采用了新的神经网络架构,融合了领先的轻量级模型设计理念。YOLOv5使用较小的骨干网络和新的检测头设计,以实现更快的推断速度,并在不降低精度的前提下提高目标检测的准确性。
亮点:
YOLOv5在模型结构上进行了改进,引入了更先进的轻量级网络架构,因此在速度和精度上都有所提升。
YOLOv5支持更灵活的模型大小和预训练选项,可以根据任务需求选择不同大小的模型,同时提供丰富的数据增强扩展、模型集成等方法来提高检测精度。YOLOv5通过使用更简洁的代码实现,提高了模型的易用性和可扩展性。

训练数据配置文件如下:

# Dataset
path: ./dataset
train:- images/train
val:- images/test
test:- images/test# Classes
names:0: unripe1: sem-ripe2: fullyripe

实验截止目前,本文将YOLOv5系列五款不同参数量级的模型均进行了开发评测,接下来看下模型详情:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5# Parameters
nc: 3  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 1024]l: [1.00, 1.00, 1024]x: [1.33, 1.25, 1024]# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)]

在实验训练开发阶段,所有的模型均保持完全相同的参数设置,等待训练完成后,来整体进行评测对比分析。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

从整体实验结果对比来看:n系列的模型效果最差,被其他几款模型拉开了明显的差距,s系列的模型在60个epoch之前同样被拉开了明显的差距,随后达到了与其他几款模型相近的水准,m和l系列的模型性能相近,x系列的模型最优,略高于m和l系列的模型,考虑到计算量的问题,这里我们最终选择使用m系列的模型来作为最终的推理模型。

接下来就以m系列的模型为基准,详细看下结果详情:

【Batch实例】

【数据分布可视化】

【PR曲线】

【训练可视化】

【混淆矩阵】

感兴趣的话都可以自行动手尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv5s

全系列五个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/255284.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mysql-数据库优化-客户端连接参数

客户端参数 原文地址 # 连接池配置 # 初始化连接数 spring.datasource.druid.initial-size1 # 最小空闲连接数,一般设置和initial-size一致 spring.datasource.druid.min-idle1 # 最大活动连接数,一个数据库能够支撑最大的连接数是多少呢? …

PKI - 借助Nginx 实现Https_使用CA签发证书

文章目录 Pre概述操作步骤1. 生成 CA 密钥对2. 生成自签名的 CA 证书3. 生成服务器密钥对和证书签名请求 (CSR)4. 使用 CA 签署服务器证书 Nginx Https 自签证书1. 生成自签名证书和私钥2. 配置 Nginx 使用 CA签发的 HTTPS 证书3. 重启 Nginx 服务4. 直接访问5. 不验证证书直接…

【书生·浦语大模型实战营】学习笔记1

大模型成为发展通用人工智能的重要途经 专用模型:针对特定任务,一个模型解决一个问题 通用大模型:一个模型应对多种任务、多种模态 书生浦语大模型系列 上海人工智能实验室 轻量级、中量级、重量级 7B 和 123B的轻量级和中量级大模型都是开源…

【数据结构】二叉树的顺序结构及实现(堆)

目录 1.二叉树的顺序结构 2.堆的概念及结构 3.堆的实现 3.1堆向下调整算法 3.2堆的创建 3.3建堆的时间复杂度 3.4堆的插入 3.5堆的删除 3.6堆的代码实现 3.7堆的应用 3.71堆排序 3.72 TOP-K问题 1.二叉树的顺序结构 普通的二叉树是不适合用数组来存储的,因…

游戏服务器多少钱一台?腾讯云32元,阿里云26元

游戏服务器租用多少钱一年?1个月游戏服务器费用多少?阿里云游戏服务器26元1个月、腾讯云游戏服务器32元,游戏服务器配置从4核16G、4核32G、8核32G、16核64G等配置可选,可以选择轻量应用服务器和云服务器,阿腾云atengyu…

Open CASCADE学习|保存为STL文件

STL (Stereolithography) 文件是一种广泛用于3D打印和计算机辅助设计 (CAD) 领域的文件格式。它描述了一个三维模型的表面而不包含颜色、材质或其他非几何信息。STL文件通常用于3D打印过程中,因为它们仅包含构建物体所需的位置信息。 由于STL文件只包含表面信息&am…

MacOS 查AirPods 电量技巧:可实现低电量提醒、自动弹窗

要怎么透过macOS 来查询AirPods 电量呢?当AirPods 和Mac 配对后,有的朋友想通过Mac来查询AirPods有多少电量,这个里有几个技巧,下面我们来介绍一下。 透过Mac 查AirPods 电量技巧 技巧1. 利用状态列上音量功能查询 如要使用此功能…

C++自定义函数详解

个人主页:PingdiGuo_guo 收录专栏:C干货专栏 铁汁们新年好呀,今天我们来了解自定义函数。 文章目录 1.数学中的函数 2.什么是自定义函数 3.自定义函数如何使用? 4.值传递和引用传递(形参和实参区分) …

Acwing---837. 连通块中点的数量

连通块中点的数量 1.题目2.基本思想3.代码实现 1.题目 给定一个包含 n n n个点(编号为 1 ∼ n 1∼n 1∼n)的无向图,初始时图中没有边。 现在要进行 m m m 个操作,操作共有三种: C a b,在点 a 和点 b …

计算机网络基本知识(二)

文章目录 概要分层为什么分层怎么分层?1.实体2.协议3.服务 分层基本原则正式认识分层详细例子解释 总结 概要 分层知识:概念理解 分层 为什么分层 大致以上五点 为了解决上面的问题(复杂) 大问题划分为小问题 怎么分层&#…

【后端高频面试题--Mybatis篇】

🚀 作者 :“码上有前” 🚀 文章简介 :后端高频面试题 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 后端高频面试题--Mybatis篇 什么是Mybatis?Mybatis的优缺点?Mybatis的特点…

提升MySQL访问性能

1. 读写分离 设置多个从数据库,从数据库可能在多个机器中。写操作在主数据库进行主数据库提供数据的主要依据 缓解了MySQL的读压力。 主从复制原理图如下 如果对于读操作有一致性要求,那么读操作去主数据库即可。 2. 连接池 因为一个请求必须要…

C语言-----自定义类型-----结构体枚举联合

结构体和数组一样,都是一群数据的集合,不同的是数组当中的数据是相同的类型,但是结构体中的数据类型可以不相同,结构体里的成员叫做成员变量 结构体类型是C语言里面的一种自定义类型,我们前面已经了解到过int,char,fl…

SpringSecurity(19)——OAuth2客户端信息存储

ClientDetailsService public interface ClientDetails extends Serializable {String getClientId();//客户端idSet<String> getResourceIds();//此客户端可以访问的资源。如果为空&#xff0c;则调用者可以忽略boolean isSecretRequired();//验证此客户端是否需要secr…

LeetCode---383周赛

题目列表 3028. 边界上的蚂蚁 3029. 将单词恢复初始状态所需的最短时间 I 3030. 找出网格的区域平均强度 3031. 将单词恢复初始状态所需的最短时间 II 一、边界上的蚂蚁 这题没什么好说的&#xff0c;模拟就行&#xff0c;本质就是看前缀和有几个为0。 代码如下 class S…

IDEA创建SpringBoot+Mybatis-Plus项目

IDEA创建SpringBootMybatis-Plus项目 一、配置Maven apache-maven-3.6.3的下载与安装&#xff08;详细教程&#xff09; 二、创建SpringBoot项目 在菜单栏选择File->new->project->Spring Initializr&#xff0c;然后修改Server URL为start.aliyun.com&#xff0c…

javaEE - 23( 21000 字 Servlet 入门 -1 )

一&#xff1a;Servlet 1.1 Servlet 是什么 Servlet 是一种实现动态页面的技术. 是一组 Tomcat 提供给程序猿的 API, 帮助程序猿简单高效的开发一个 web app. 构建动态页面的技术有很多, 每种语言都有一些相关的库/框架来做这件事&#xff0c;Servlet 就是 Tomcat 这个 HTTP…

JAVA设计模式之建造者模式详解

建造者模式 1 建造者模式介绍 建造者模式 (builder pattern), 也被称为生成器模式 , 是一种创建型设计模式. 定义: 将一个复杂对象的构建与表示分离&#xff0c;使得同样的构建过程可以创建不同的表示。 **建造者模式要解决的问题 ** 建造者模式可以将部件和其组装过程分开…

前端小案例——动态导航栏文字(HTML + CSS, 附源码)

一、前言 实现功能: 这案例是一个具有动态效果的导航栏。导航栏的样式设置了一个灰色的背景&#xff0c;并使用flex布局在水平方向上平均分配了四个选项。每个选项都是一个li元素&#xff0c;包含一个文本和一个横向的下划线。 当鼠标悬停在选项上时&#xff0c;选项的文本颜色…

烟火可禁却难禁,灵境难及终将及

现实痛点 2024年1月30日&#xff0c;贵阳市发生了一件令人痛心的事&#xff0c;有人在小区内放烟花导致失火&#xff0c;一男子具备足够的消防安全知识&#xff0c;知道如何使用消防栓却因设施不合格接不上消防栓&#xff0c;接上了又没水&#xff0c;消防员来也束手无策&…