【MATLAB】GA_BP神经网络回归预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

GA_BP神经网络回归预测算法结合了遗传算法(Genetic Algorithm, GA)和BP神经网络(Backpropagation Neural Network, BPNN),用于解决回归预测问题。下面将详细介绍该算法的原理:

  1. BP神经网络回归模型:

    • BP神经网络是一种前向人工神经网络,具有输入层、隐藏层和输出层。每个神经元都与下一层的所有神经元相连,其中权重和偏差是可学习的参数。

    • 模型使用反向传播算法来更新权重和偏差,以最小化预测输出与真实输出之间的误差。

  2. 遗传算法:

    • 遗传算法是一种通过模拟生物进化过程来搜索优化问题的全局最优解的算法。

    • 其中包含了选择、交叉和变异三个基本操作。

    • 选择:根据适应度函数选择某个个体作为父代,适应度越高的个体被选中的概率越大。

    • 交叉:将选中的两个个体的染色体进行交换或重组,生成新的个体。

    • 变异:对新个体的染色体进行随机改变,引入新的基因信息。

  3. GA_BP神经网络回归预测算法原理:

    • 步骤1:初始化种群,每个个体表示一个BP神经网络的权重和偏差。

    • 步骤2:对每个个体,使用BP神经网络进行训练,并计算其适应度,适应度函数可为预测误差的平方和。

    • 步骤3:使用选择操作,根据适应度函数选择父代个体。

    • 步骤4:使用交叉操作对父代个体进行交叉,生成新的个体。

    • 步骤5:使用变异操作对新个体进行变异,引入新的基因信息。

    • 步骤6:将新个体加入种群,并删除适应度较低的个体。

    • 步骤7:重复步骤2至步骤6,直到达到停止条件(如达到最大迭代次数)。

    • 步骤8:选择适应度最高的个体作为最终的解,即具有最优权重和偏差的BP神经网络。

通过遗传算法的选择、交叉和变异操作,GA_BP神经网络回归预测算法能够搜索到适应度最高的个体,即具有最优参数的BP神经网络模型。这样的组合使得该算法在处理回归预测问题时具有较好的性能和泛化能力。

2 出图效果

附出图效果如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/256318.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯嵌入式第8届真题(完成) STM32G431

蓝桥杯嵌入式第8届真题(完成) STM32G431 题目 分析和代码 对比第六届和第七届,这届的题目在逻辑思维上确实要麻烦不少,可以从题目看出,这届题目对时间顺序的要求很严格,所以就可以使用状态机的思想来编程,拿到类似题…

Python基于大数据的电影预测分析系统

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

介绍 MSTest Runner – CLI、Visual Studio 等

作者:Amaury Lev Marco Rossignoli Jakub Jareš 排版:Alan Wang 我们很高兴推出 MSTest 运行器,这是一款全新的轻量级 MSTest 测试运行器。这个新的运行器使测试更加便携和可靠,运行速度更快,并且具有可扩展性&#x…

leetcode 461. 汉明距离

比较简单的一题,先对两个整数进行异或操作,会将两个整数二进制形式中各个数字进行异或操作,不同的数字则为1,再通过移位操作统计得到的二进制数中为1的个数,即为所求。 Java代码如下: class Solution {pub…

Android SystemConfig相关

SystemConfig在哪里初始化 它声明在PackageManagerService类的静态方法main()中。在该方法中间定义Injector类对象时,作为它的构造参数。它是调用的SystemConfig.getInstance()实现初始化,之后能通过Injector类对象的getSystemConfig()得到SystemConfig类…

计算机网络——网络安全

计算机网络——网络安全 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家, [跳转到网站](https://www.captainbed.cn/qianqiu) 小程一言专栏链接: [link](http://t.csdnimg.cn/ZUTXU) 网络安全何…

PyTorch深度学习实战(26)——多对象实例分割

PyTorch深度学习实战(26)——多对象实例分割 0. 前言1. 获取并准备数据2. 使用 Detectron2 训练实例分割模型3. 对新图像进行推断小结系列链接 0. 前言 我们已经学习了多种图像分割算法,在本节中,我们将学习如何使用 Detectron2 …

单页404源码

<!doctype html> <html> <head> <meta charset"utf-8"> <title>简约 404错误页</title><link rel"shortcut icon" href"./favicon.png"><style> import url("https://fonts.googleapis.co…

C# 字体大小的相关问题

设置字体大小无法这么写&#xff0c; button1.Font.Size 20&#xff1b; 这个是只读属性&#xff1b; 把字体大小改为16&#xff0c; button2.Font new Font(button2.Font.Name, 16); 程序运行的时候先看一下窗体和控件的默认字体尺寸&#xff0c;都是9&#xff1b;然后点b…

jsp教务管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 JSP 教务管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql5.0&…

人脸追踪案例及机器学习认识

1.人脸追踪机器人初制 用程序控制舵机运动的方法与机械臂项目完全相同。 由于摄像头的安装方式为上下倒转安装&#xff0c;我们在编写程序读取图像时需使用 flip 函数将 图像上下翻转。 现在&#xff0c;只需要使用哈尔特征检测得到人脸在图像中的位置&#xff0c;再指示舵机运…

Docker容器输入汉字触发自动补全

一、描述 输入汉字自动触发补全&#xff1a; Display all 952 possibilities? (y or n)是因为容器中没有中文字符集和中文字体导致的&#xff0c;安装中文字体&#xff0c;并设置字符集即可。 二、解决 1、安装字符集 &#xff08;1&#xff09;查看系统支持的字符集 lo…

使用Cargo创建、编译与运行Rust项目

在 Rust 开发中&#xff0c;Cargo 是一个非常重要的工具&#xff0c;它负责项目的构建、管理和依赖管理。以下是如何使用 Cargo 创建、编译和运行 Rust 项目的详细步骤。 1. 创建新项目 首先确保你已经在计算机上安装了 Rust 和 Cargo。然后&#xff0c;在命令行中输入以下命…

HarmonyOS 横屏调试与真机横屏运行

我们有些程序 需要横屏才能执行出效果 我们在预览器上 点击如下图指向出 就进入一个横屏调试了 但 我们真机运行 依旧是竖着的 我们如下图 找到 module.json5 在 abilities 下面 第一个对象 最下面 加上 "orientation": "landscape"然后 我们再真机运…

【深度学习】基于多层感知机的手写数字识别

案例2&#xff1a;构建自己的多层感知机: MNIST手写数字识别 相关知识点: numpy科学计算包&#xff0c;如向量化操作&#xff0c;广播机制等 1 任务目标 1.1 数据集简介 ​ MNIST手写数字识别数据集是图像分类领域最常用的数据集之一&#xff0c;它包含60,000张训练图片&am…

算法沉淀——位运算(leetcode真题剖析)

算法沉淀——位运算 常用位运算总结1.基础位运算2.确定一个数中第x位是0还是13.将一个数的第x位改成14.将一个数的第x位改成05.位图6.提取一个数最右边的17.删掉一个数最右边的18.异或运算9.基础例题 力扣题目讲解01.面试题 01.01. 判定字符是否唯一02.丢失的数字03.两整数之和…

opencv mat用法赋值克隆的操作和一些基本属性

//Mat基本结构 (头部 数据部分) //赋值的话 就是修改了指针位置 但还是指向了原来数据 并没创建数据 本质上并没有变 //只有克隆或者拷贝时 它才会真正复制一份数据 //代码实现 //创建方法 - 克隆 //Mat m1 src.clone(); //复制 //Mat m2; //src.copyTo(m2); //赋值法 …

Git的基础操作指令

目录 1 前言 2 指令 2.1 git init 2.2 touch xxx 2.3 git status 2.4 git add xxx 2.5 git commit -m xxxx 2.5 git log及git log --prettyoneline --all --graph --abbrev-commit 2.6 rm xxx 2.7 git reset --hard xxx(含小技巧) 2.8 git reflog 2.9 mv xxx yyy 1…

Verilog刷题笔记30

题目&#xff1a; You are provided with a BCD one-digit adder named bcd_fadd that adds two BCD digits and carry-in, and produces a sum and carry-out. 解题&#xff1a; module top_module( input [399:0] a, b,input cin,output cout,output [399:0] sum );reg [99…

Stream流学习笔记

Stream流 创建流中间操作1、filter2、map3、distinct4、sorted5、limit6、skip7、flatMap 终结操作1、forEach2、count3、max&min4、collect5、查找与匹配 创建流 单例集合&#xff1a;集合对象.stream() List<Integer> list new ArrayList<>(); Stream<…