线性代数的本质 1 向量

向量是线性代数中最为基础的概念。

何为向量?

        从物理上看, 向量就是既有大小又有方向的量,只要这两者一定,就可以在空间中随便移动。

        从计算机应用的角度看,向量和列表很接近,可以用来描述某对象的几个不同属性, 比如长2宽3,就可以写成\begin{bmatrix} 2\\ 3 \end{bmatrix}

        数学上给出最为广义的定义,一切对于相加和数乘有意义的都可以是向量。这实际上暗示了这两种运算会贯穿整个线性代数。

一种思考方式

        一种很好的思考向量的方式是:看到一个向量,想到一个箭头,它落在某个坐标系,且起点大多数时候固定在原点。

        这与上述的第一种定义契合,即“向量是空间中的箭头”。

        现在再看第二种定义,即“向量是有序的数字列表”:在定义了单位长度之后,我们就可以给出一个向量的坐标,这就是一个有序列表,它指示我们如何从向量的出发点(原点)到达向量的尖端。比如\begin{bmatrix} -2\\ 3 \end{bmatrix},告诉我们应该先沿着x轴负方向走2单位,再沿着y轴正方向走3个单位。

        每个有序列表对应唯一一个箭头,每个箭头对应唯一一个有序列表。

向量相加

        现在来考虑两种最基本运算中的加法。

        几何上看

        沿用上述的思考方式,定义中的向量相加,就是把两个箭头首尾相接,然后画一个从前一个向量的首(原点)到后一个向量的尾的向量,这个向量就是结果。像这样

        但为什么要这样定义, 而不是从首到首呢?像这样

        因为往往将向量看作一个特定的运动,从首到尾, 按这种定义,向量的和就是先后沿着两个向量运动的整体上的结果,具有很直观的意义。

        实际上,如果把这种加法放到一维坐标系(数轴)上,其实就是在数轴上做数字加减的方法。

        代数上看

        第一个向量坐标是(1, 2)第二个向量坐标是(3, -1)。

        前面提到过,这个坐标指示我们如何通过先后沿平行x轴和y轴的方向移动,从一个向量的首走到尾,那么对于两个首位相接的向量,我们做加法的任务就是找出类似的这种方案,从第一个向量的首走到第二个向量的尾。

        在得到这个方案之前,我们只知道,先走第一个向量,再紧接着走第二个向量,按坐标给出的信息,这是一个4步的方案:x轴1,y轴2,x轴3,y轴-1。我们要得到的方案是两步的,也就是x轴几,y轴几。

        因为x轴和y轴上的行走是独立的,所以我们可以交换顺序,先做水平运动,再做竖直运动。整体上看,就等同于在x轴走(1+3)在y轴走(2-1)。这样我们就找到了我们要找的方案。

       \begin{bmatrix} 1\\ 2 \end{bmatrix}+\begin{bmatrix} 3\\ -1 \end{bmatrix}=\begin{bmatrix} 1+3\\ 2+(-1) \end{bmatrix}

        这样我们也就推出了向量的加法法则,也知道了为什么要这样加。即有

\begin{bmatrix} x_1\\ y_1 \end{bmatrix}+\begin{bmatrix} x_2\\ y_2 \end{bmatrix}=\begin{bmatrix} x_1+y_1\\ x_2+y_2 \end{bmatrix}

向量数乘 

        对向量乘上一个数,本质上就是在做缩放(scaling)

        拉伸或压缩,如果有负号就反向。

         这个用来缩放(scaling)的数,英文上很自然的可以叫做scalar,确实有这个词,而它的中文翻译是标量。所以标量其实就可以理解成用来缩放向量的东西。在线性代数中,标量的作用基本上就是用来缩放向量。

        数乘的运算法可以用相似推出来, 就是对每个分量分别乘上标量。

a\begin{bmatrix} x_1\\ y_1 \end{bmatrix}=\begin{bmatrix} ax_1\\ ay_1 \end{bmatrix} 

实际上,无论从哪个角度来看待向量都可,线性代数的效用很少仅仅体现在其中一个角度上,而是体现在这些不同角度的相互转化中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/256486.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OCP使用web console创建和构建应用

文章目录 环境登录创建project赋予查看权限部署第一个image检查pod扩展应用 部署一个Python应用连接数据库创建secret加载数据并显示国家公园地图 清理参考 环境 RHEL 9.3Red Hat OpenShift Local 2.32 登录 在 crc start 启动crc时,可以看到: .....…

【Django】Django日志管理

Django日志管理 Django使用Python内置的logging模块处理系统日志。 1.日志框架的组成元素 Python logging 配置由下面四部分组成: Loggers Handlers 过滤器 Formatters 1.1 Loggers logger是日志系统的入口,每个 logger都是命名了的 bucket&…

一句话总结Docker与K8S的关系

一句话总结:Docker只是容器的一种,它面向的是单体,K8S可以管理多种容器,它面向的是集群,Docker可以作为一种容器方案被K8S管理。下文继续具体介绍。 1、容器的核心概念 介绍这几个核心概念:OCI、CR、Runc、…

从Unity到Three.js(安装启动)

发现在3D数字孪生或模拟仿真方向,越来越多的公司倾向使用Web端程序,目前一直都是使用的Unity进行的Web程序开发,但是存在不少问题,比如内存释放、shader差异化、UI控件不支持复制或输入中文等。虽然大多数问题都可以找到解决方案&…

微信自动预约小程序开发指南:从小白到专家

在数字化时代,预约小程序已成为各类服务行业的必备工具。本文将指导你从零开始,通过第三方小程序制作平台,顺利开发出一款具有预约功能的实用小程序。 第一步:注册登录第三方小程序制作平台 首先,你需要选择一个适合你…

AtCoder Beginner Contest 340 C - Divide and Divide【打表推公式】

原题链接:https://atcoder.jp/contests/abc340/tasks/abc340_c Time Limit: 2 sec / Memory Limit: 1024 MB Score: 300 points 问题陈述 黑板上写着一个整数 N。 高桥将重复下面的一系列操作,直到所有不小于2的整数都从黑板上移除: 选择…

java SpringBoot2.7整合Elasticsearch(ES)7 进行文档增删查改

首先 我们在 ES中加一个 books 索引 且带有IK分词器的索引 首先 pom.xml导入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-elasticsearch</artifactId> </dependency>applicatio…

ruoyi若依框架SpringSecurity实现分析

系列文章 ruoyi若依框架学习笔记-01 ruoyi若依框架分页实现分析 ruoyi若依框架SpringSecurity实现分析 文章目录 系列文章前言具体分析一、项目中的SpringSecurity版本二、登录认证流程分析三、权限鉴定四、退出登录五、SpringSecurity配置类 总结 前言 在ruoyi-vue若依框…

记一次页面接口502问题:“502 Bad Gateway”

接收别人的项目进行迭代&#xff0c;项目部署到服务器上之后&#xff0c;有一个接口数据刷不出来&#xff0c;一直502 后来联想到网关的问题&#xff0c;想通过设置白名单的方式解决&#xff0c;设置之后依旧不行。 查看nginx日志发现报错&#xff1a; *169 connect() failed …

【Git】移除Git中的文件

有的时候需要移除或者更新 Git 中的文件&#xff0c;我们无法直接在远程仓库中移除&#xff0c;移除或者更新操作需要在本地端实现。 1、移除被跟踪文件 当某个文件被添加到暂存区或者本地仓库&#xff0c;此时会被标记为“跟踪状态”&#xff0c;此时 Git 就会代为管理这个文…

【go语言】一个简单HTTP服务的例子

一、Go语言安装 Go语言&#xff08;又称Golang&#xff09;的安装过程相对简单&#xff0c;下面是在不同操作系统上安装Go语言的步骤&#xff1a; 在Windows上安装Go语言&#xff1a; 访问Go语言的官方网站&#xff08;golang.org&#xff09;或者使用国内镜像站点&#xff0…

vue3 腾讯tdesign 后台管理框架的使用

1.介绍 TDesign 是具有包容性的设计体系&#xff0c;它强调为业务提供产品、服务等过程中&#xff0c;追求以人为本、人人受益的包容性&#xff0c;要求搭建过程中&#xff0c;了解业务底层&#xff0c;理解业务场景的多样性&#xff0c;并在繁杂的业务场景中寻找共性和特性&a…

GeoServer 2.11.1升级解决Eclipse Jetty 的一系列安全漏洞问题

Eclipse Jetty 资源管理错误漏洞(CVE-2021-28165) Eclipse Jetty HTTP请求走私漏洞(CVE-2017-7656) Eclipse Jetty HTTP请求走私漏洞(CVE-2017-7657) Eclipse Jetty HTTP请求走私漏洞(CVE-2017-7658) Jetty 信息泄露漏洞(CVE-2017-9735) Eclipse Jetty 安全漏洞(CVE-2022-20…

算法沉淀——分治算法(leetcode真题剖析)

算法沉淀——分治算法 快排思想01.颜色分类02.排序数组03.数组中的第K个最大元素04.库存管理 III 归并思想01.排序数组02.交易逆序对的总数03.计算右侧小于当前元素的个数04.翻转对 分治算法是一种解决问题的算法范式&#xff0c;其核心思想是将一个大问题分解成若干个小问题&a…

Unity笔记:相机移动

基础知识 鼠标输入 在Unity中&#xff0c;开发者在“Edit” > “Project Settings” > “Input Manager”中设置输入&#xff0c;如下图所示&#xff1a; 在设置了Mouse X后&#xff0c;Input.GetAxis("Mouse X")返回的是鼠标在X轴上的增量值。这意味着它会…

Solidworks:从2D走向3D

Sokidworks 的强大之处在于三维实体建模&#xff0c;这个形状看似复杂&#xff0c;实际上只需要拉伸一次&#xff0c;再做一次减法拉伸就行了。第一次做三维模型&#xff0c;费了不少时间才搞明白。 接下来做一个稍微复杂一点的模型&#xff0c;和上面这个操作差不多&#xff0…

LeetCode.144. 二叉树的前序遍历

题目 144. 二叉树的前序遍历 分析 这道题目是比较基础的题目&#xff0c;我们首先要知道二叉树的前序遍历是什么&#xff1f; 就是【根 左 右】 的顺序&#xff0c;然后利用递归的思想&#xff0c;就可以得到这道题的答案&#xff0c;任何的递归都可以采用 栈 的结构来实现…

利用Windows10漏洞破解密码(保姆级教学)

前言: 本篇博客只是技术分享并非非法传播知识,实验内容均是在虚拟机中进行,并非真实环境 正文: 一.windows10电脑密码破解 1)开启windows10虚拟机,停留在这个页面 2&#xff09;按5次Shift键,出现这个粘滞键,如果没有出现的,则说明漏洞已经修复 3)重新启动,在这个页面的时候…

Qt网络编程-TCP与UDP

网络基础 TCP与UDP基础 关于TCP与UDP的基础这里就不过多介绍了&#xff0c;具体可以查看对应百度百科介绍&#xff1a; TCP&#xff08;传输控制协议&#xff09;_百度百科 (baidu.com) UDP_百度百科 (baidu.com) 需要知道这两者的区别&#xff1a; 可靠性&#xff1a; TC…

【C语言】实现单链表

目录 &#xff08;一&#xff09;头文件 &#xff08;二&#xff09;功能实现 &#xff08;1&#xff09;打印单链表 &#xff08;2&#xff09;头插与头删 &#xff08;3&#xff09;尾插与尾删 &#xff08;4&#xff09; 删除指定位置节点 和 删除指定位置之后的节点 …