书生·浦语大模型第四课作业

基础作业:

构建数据集,使用 XTuner 微调 InternLM-Chat-7B 模型, 让模型学习到它是你的智能小助手,效果如下图所示,本作业训练出来的模型的输出需要将不要葱姜蒜大佬替换成自己名字或昵称!

1.安装

# 如果你是在 InternStudio 平台,则从本地 clone 一个已有 pytorch 2.0.1 的环境:
/root/share/install_conda_env_internlm_base.sh xtuner0.1.9
# 如果你是在其他平台:
conda create --name xtuner0.1.9 python=3.10 -y# 激活环境
conda activate xtuner0.1.9
# 进入家目录 (~的意思是 “当前用户的home路径”)
cd ~
# 创建版本文件夹并进入,以跟随本教程
mkdir xtuner019 && cd xtuner019# 拉取 0.1.9 的版本源码
git clone -b v0.1.9  https://github.com/InternLM/xtuner
# 无法访问github的用户请从 gitee 拉取:
# git clone -b v0.1.9 https://gitee.com/Internlm/xtuner# 进入源码目录
cd xtuner# 从源码安装 XTuner
pip install -e '.[all]'

安装完后,就开始搞搞准备工作了。(准备在 oasst1 数据集上微调 internlm-7b-chat)

# 创建一个微调 oasst1 数据集的工作路径,进入
mkdir ~/ft-oasst1 && cd ~/ft-oasst1

2.3 微调

2.3.1 准备配置文件

XTuner 提供多个开箱即用的配置文件,用户可以通过下列命令查看

# 列出所有内置配置
xtuner list-cfg

在本案例中即:(注意最后有个英文句号,代表复制到当前路径)

cd ~/ft-oasst1
xtuner copy-cfg internlm_chat_7b_qlora_oasst1_e3 .

配置文件名的解释:

xtuner copy-cfg internlm_chat_7b_qlora_oasst1_e3 .

模型名internlm_chat_7b
使用算法qlora
数据集oasst1
把数据集跑几次跑3次:e3 (epoch 3 )
2.3.2 模型下载

由于下载模型很慢,用教学平台的同学可以直接复制模型。

ln -s /share/temp/model_repos/internlm-chat-7b ~/ft-oasst1/
2.3.3 数据集下载

https://huggingface.co/datasets/timdettmers/openassistant-guanaco/tree/main

由于 huggingface 网络问题,咱们已经给大家提前下载好了,复制到正确位置即可:

cd ~/ft-oasst1
# ...-guanaco 后面有个空格和英文句号啊
cp -r /root/share/temp/datasets/openassistant-guanaco .

 此时,当前路径的文件应该长这样:

|-- internlm-chat-7b
|   |-- README.md
|   |-- config.json
|   |-- configuration.json
|   |-- configuration_internlm.py
|   |-- generation_config.json
|   |-- modeling_internlm.py
|   |-- pytorch_model-00001-of-00008.bin
|   |-- pytorch_model-00002-of-00008.bin
|   |-- pytorch_model-00003-of-00008.bin
|   |-- pytorch_model-00004-of-00008.bin
|   |-- pytorch_model-00005-of-00008.bin
|   |-- pytorch_model-00006-of-00008.bin
|   |-- pytorch_model-00007-of-00008.bin
|   |-- pytorch_model-00008-of-00008.bin
|   |-- pytorch_model.bin.index.json
|   |-- special_tokens_map.json
|   |-- tokenization_internlm.py
|   |-- tokenizer.model
|   `-- tokenizer_config.json
|-- internlm_chat_7b_qlora_oasst1_e3_copy.py
`-- openassistant-guanaco|-- openassistant_best_replies_eval.jsonl`-- openassistant_best_replies_train.jsonl
2.3.4 修改配置文件

修改其中的模型和数据集为 本地路径

cd ~/ft-oasst1
vim internlm_chat_7b_qlora_oasst1_e3_copy.py

在vim界面完成修改后,请输入:wq退出。假如认为改错了可以用:q!退出且不保存。当然我们也可以考虑打开python文件直接修改,但注意修改完后需要按下Ctrl+S进行保存。

减号代表要删除的行,加号代表要增加的行。

# 修改模型为本地路径
- pretrained_model_name_or_path = 'internlm/internlm-chat-7b'
+ pretrained_model_name_or_path = './internlm-chat-7b'# 修改训练数据集为本地路径
- data_path = 'timdettmers/openassistant-guanaco'
+ data_path = './openassistant-guanaco'

常用超参

参数名解释
data_path数据路径或 HuggingFace 仓库名
max_length单条数据最大 Token 数,超过则截断
pack_to_max_length是否将多条短数据拼接到 max_length,提高 GPU 利用率
accumulative_counts梯度累积,每多少次 backward 更新一次参数
evaluation_inputs训练过程中,会根据给定的问题进行推理,便于观测训练状态
evaluation_freqEvaluation 的评测间隔 iter 数
............

如果想把显卡的现存吃满,充分利用显卡资源,可以将 max_length 和 batch_size 这两个参数调大。

2.3.5 开始微调

训练:

xtuner train ${CONFIG_NAME_OR_PATH}

也可以增加 deepspeed 进行训练加速:

xtuner train ${CONFIG_NAME_OR_PATH} --deepspeed deepspeed_zero2

例如,我们可以利用 QLoRA 算法在 oasst1 数据集上微调 InternLM-7B:

# 单卡
## 用刚才改好的config文件训练
xtuner train ./internlm_chat_7b_qlora_oasst1_e3_copy.py# 多卡
NPROC_PER_NODE=${GPU_NUM} xtuner train ./internlm_chat_7b_qlora_oasst1_e3_copy.py# 若要开启 deepspeed 加速,增加 --deepspeed deepspeed_zero2 即可

 微调得到的 PTH 模型文件和其他杂七杂八的文件都默认在当前的 ./work_dirs 中。

跑完训练后,当前路径应该长这样:

|-- internlm-chat-7b
|-- internlm_chat_7b_qlora_oasst1_e3_copy.py
|-- openassistant-guanaco
|   |-- openassistant_best_replies_eval.jsonl
|   `-- openassistant_best_replies_train.jsonl
`-- work_dirs`-- internlm_chat_7b_qlora_oasst1_e3_copy|-- 20231101_152923|   |-- 20231101_152923.log|   `-- vis_data|       |-- 20231101_152923.json|       |-- config.py|       `-- scalars.json|-- epoch_1.pth|-- epoch_2.pth|-- epoch_3.pth|-- internlm_chat_7b_qlora_oasst1_e3_copy.py`-- last_checkpoint

2.3.6 将得到的 PTH 模型转换为 HuggingFace 模型,即:生成 Adapter 文件夹
mkdir hf
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm_chat_7b_qlora_oasst1_e3_copy.py ./work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy/epoch_1.pth ./hf

2.4 部署与测试

2.4.1 将 HuggingFace adapter 合并到大语言模型:
xtuner convert merge ./internlm-chat-7b ./hf ./merged --max-shard-size 2GB
# xtuner convert merge \
#     ${NAME_OR_PATH_TO_LLM} \
#     ${NAME_OR_PATH_TO_ADAPTER} \
#     ${SAVE_PATH} \
#     --max-shard-size 2GB

2.4.2 与合并后的模型对话:
# 加载 Adapter 模型对话(Float 16)
xtuner chat ./merged --prompt-template internlm_chat# 4 bit 量化加载
# xtuner chat ./merged --bits 4 --prompt-template internlm_chat

2.4.3 Demo
  • 修改 cli_demo.py 中的模型路径
- model_name_or_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b"
+ model_name_or_path = "merged"
vim /root/code/InternLM/cli_demo.py

 微调过程截图:

 微调过程截图:

 微调过程截图:

 微调过程截图:

 训练完成后,AI人设已经变成了我定义的内容:目前只跑通了CLI命令行的测试验证效果:

 执行的脚本内容:cli_demo.py

import torch
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_name_or_path = "/root/personal_assistant/config/work_dirs/hf_merge"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""messages = [(system_prompt, '')]print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")while True:input_text = input("User  >>> ")input_text.replace(' ', '')if input_text == "exit":breakresponse, history = model.chat(tokenizer, input_text, history=messages)messages.append((input_text, response))print(f"robot >>> {response}")

 补充:

建议复制以下内容到 personal_assistant目录里,否则缺少必要的脚本

cp -r /root/code/InternLM/ /root/personal_assistant/code/InternLM/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/257009.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

三、案例 - MySQL数据迁移至ClickHouse

MySQL数据迁移至ClickHouse 一、生成测试数据表和数据1.在MySQL创建数据表和数据2.在ClickHouse创建数据表 二、生成模板文件1.模板文件内容2.模板文件参数详解2.1 全局设置2.2 数据读取(Reader)2.3 数据写入(Writer)2.4 性能设置…

【每日一题】牛客网——链表的回文结构

✨专栏:《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️ 🙏小杨水平有限,欢迎各位大佬指点,相互学习…

【JavaEE进阶】 图书管理系统开发日记——陆

文章目录 🎋前言🍃删除图书🚩约定前后端交互接口🚩完善前端代码🚩接口测试 🎍批量删除🚩约定前后端交互接口🚩实现后端服务器代码🎈控制层🎈业务层&#x1f3…

查看系统进程信息的Tasklist命令

Tasklist命令是一个用来显示运行在本地计算机上所有进程的命令行工具,带有多个执行参数。另外,Tasklist可以代替Tlist工具。通过任务管理器,可以查看到本机完整的进程列表,而且可以通过手工定制进程列表方式获得更多进程信息&…

Vue源码系列讲解——模板编译篇【二】(整体运行流程)

目录 1. 整体流程 2. 回到源码 3. 总结 1. 整体流程 上篇文章中我们说了&#xff0c;在模板解析阶段主要做的工作是把用户在<template></template>标签内写的模板使用正则等方式解析成抽象语法树&#xff08;AST&#xff09;。而这一阶段在源码中对应解析器&…

港口码头航吊远距离相位测距仪|传感器PHR-120100配置使用说明

港口码头航吊远距离相位测距仪|传感器PHR-120100广泛应用于港口码头、航车、位移监测、形变监测、钢铁、堆垛机、龙门吊等领域。 本文重点介绍港口码头航吊远距离相位测距仪|传感器PHR-120100配置使用说明。 一、布局介绍 二、按键介绍 三、指示灯说明 四、显示屏操作说明 …

Git中Idea操作git及Git Flow

目录 一、Idea中使用Git 1.idea配置Git和Gitee 2.实践操作 1.将本地项目推送到远程 2.从远程库克隆项目到本地 二、Git Flow 1.什么是Git Flow 2.工作流程 3.实践操作 一、Idea中使用Git 1.idea配置Git和Gitee 第一步&#xff1a;设置git.exe的安装路径 在设置中的…

蓝牙BLE学习-安全

1.基本概念 蓝牙标准规定了5种基本的安全服务 身份验证:根据通信设备的蓝牙地址验证其身份。蓝牙不提供本地用户身份验证。保密性:确保只有授权的设备才能访问和查看传输的数据&#xff0c;防止窃听造成的信息泄露。授权(Authorization):在允许设备使用某项服务之前&#xff…

深度测评:ONLYOFFICE 桌面编辑器 v8.0新功能

目录 前言 一、PDF表单处理&#xff1a;提升办公效率 二、RTL&#xff08;从右到左&#xff09;支持&#xff1a;满足不同语言习惯 三、Moodle集成&#xff1a;教育行业的新助力 四、本地界面主题&#xff1a;个性化办公体验 五、性能优化与稳定性提升 六、性能与稳定性…

C++ Qt框架开发 | 基于Qt框架开发实时成绩显示排序系统(3) 保存表格数据

对上两篇篇的工作C Qt框架开发| 基于Qt框架开发实时成绩显示排序系统&#xff08;1&#xff09;-CSDN博客和C Qt框架开发 | 基于Qt框架开发实时成绩显示排序系统&#xff08;2&#xff09;折线图显示-CSDN博客继续优化&#xff0c;增加一个保存按钮&#xff0c;用于保存成绩数据…

不可错过!10款超赞实用插件框架

Cocos 游戏开发十八般武器&#xff0c;尽在 Cocos Store 今天给大家分享10款实用插件与框架&#xff01; 1. 快闪-Tab标签王(prefab标签栏) 作者&#xff1a;嘉年华&#xff08;gameWs&#xff09; 《快闪-标签王》插件&#xff0c;解决了日常开发过程中&#xff0c;经常需要通…

一、Docker部署MySQL

Docker部署MySQL 一、安装Docker二、拉取MySQL镜像1.选择拉取版本2.拉取镜像 三、启动MySQL1.确定好挂载目录2.启动3.查看是否启动4.开启远程访问权限 一、安装Docker 安装教程&#xff1a;https://qingsi.blog.csdn.net/article/details/131270071 二、拉取MySQL镜像 1.选择…

Microsoft OneNote 图片文字提取

Microsoft OneNote 图片文字提取 1. 文件 -> 新建 -> 我的电脑 -> 名称 -> 位置 -> 创建笔记本2. 插入图片​​​3. 复制图片中的文本References 1. 文件 -> 新建 -> 我的电脑 -> 名称 -> 位置 -> 创建笔记本 ​ 2. 插入图片 ​​​3. 复制图片…

【lesson52】 线程概念

文章目录 线程学习前的了解知识理解线程 线程学习前的了解知识 线程在进程内部执行&#xff0c;是OS调度的基本单位 OS可以做到让进程对进程地址空间进行资源的细粒度划分 比如malloc一块内存空间&#xff0c;我们拿到的一般都是起始位置&#xff0c;但是最终位置我们一般都不…

kali系统概述、nmap扫描应用、john破解密码、抓包概述、以太网帧结构、抓包应用、wireshark应用、nginx安全加固、Linux系统加固

目录 kali nmap扫描 使用john破解密码 抓包 封装与解封装 网络层数据包结构 TCP头部结构​编辑 UDP头部结构 实施抓包 安全加固 nginx安全 防止缓冲区溢出 Linux加固 kali 实际上它就是一个预安装了很多安全工具的Debian Linux [rootmyhost ~]# kali resetkali …

一、Docker/安装包部署ClickHouse

Docker/安装包部署ClickHouse 一、docker部署1.安装Docker2.拉取ClickHouse镜像2.1 选择拉取版本2.2 拉取镜像 3.启动ClickHouse3.1 确定好挂载目录3.2 测试环境3.3 生产环境3.1.1 获取配置文件3.1.2 配置文件中添加用户3.1.3 启动容器 4.使用DBeaver连接 二、安装包安装1.准备…

数据结构——线性表

逻辑结构——线性表 1.线性表的定义&#xff08;逻辑结构&#xff09; 要点&#xff1a; 相同数据类型有限序列 几个概念&#xff1a; 是线性表中的“第i个”元素线性表中的位序 是表头元素&#xff1b;是表尾元素。 除第一个元素外&#xff0c;每个元素有且仅有一个直接前驱&…

用C语言列出Linux或Unix上的网络适配器

上代码&#xff1a; 1. #include <sys/socket.h> 2. #include <stdio.h> 3. 4. #include <netdb.h> 5. #include <ifaddrs.h> 6. 7. int main() { 8. struct ifaddrs *addresses; 9. if(getifaddrs(&addresses) -1) { 10. printf("…

股票K线简介

股票K线&#xff08;K-Line&#xff09;是用于表示股票价格走势的图形&#xff0c;主要由四个关键价格点组成&#xff1a;开盘价、收盘价、最高价和最低价。K线图广泛应用于股票市场技术分析中&#xff0c;它提供了丰富的信息&#xff0c;帮助分析师和投资者理解市场的行情走势…

微信小程序(四十四)鉴权组件插槽-登入检测

注释很详细&#xff0c;直接上代码 新增内容&#xff1a; 1.鉴权组件插槽的用法 2.登入检测示范 源码&#xff1a; app.json {"usingComponents": {"auth":"/components/auth/auth"} }app.js App({globalData:{//定义全局变量isLoad:false} })…