人工智能学习与实训笔记(二):神经网络之图像分类问题

人工智能专栏文章汇总:人工智能学习专栏文章汇总-CSDN博客

目录

二、图像分类问题

2.1 尝试使用全连接神经网络

2.2 引入卷积神经网络

 2.3 分类函数Softmax

2.4 交叉熵损失函数

2.5 学习率优化算法

2.6 图像预处理算法

2.6.1 随机改变亮暗、对比度和颜色等

2.6.2 随机填充

2.6.3 随机裁剪

2.6.4 随机缩放

2.6.5 随机翻转

2.6.6 随机打乱真实框排列顺序


二、图像分类问题

图像分类问题是神经网络经常遇到的处理任务,需要将图像按给定的类别进行分类。

本篇通过手写数字识别这个典型的图像分类任务(0~9个数字一共是10个类别),来了解图像分类问题的特点,原理和方法。

我们首先尝试使用典型的全连接神经网络,再引入适合图像处理任务的卷积神经网络。

2.1 尝试使用全连接神经网络

经典的全连接神经网络来包含四层网络:输入层、两个隐含层和输出层,将手写数字识别任务通过全连接神经网络表示:

  • 输入层:将数据输入给神经网络。在该任务中,输入层的尺度为28×28的像素值。
  • 隐含层:增加网络深度和复杂度,隐含层的节点数是可以调整的,节点数越多,神经网络表示能力越强,参数量也会增加。在该任务中,中间的两个隐含层为10×10的结构,通常隐含层会比输入层的尺寸小,以便对关键信息做抽象,激活函数使用常见的Sigmoid函数。
  • 输出层:输出网络计算结果,输出层的节点数是固定的。如果是回归问题,节点数量为需要回归的数字数量。如果是分类问题,则是分类标签的数量。在该任务中,模型的输出是回归一个数字,输出层的尺寸为1。

Python源码 - 激活函数为sigmoid的多层网络参考代码:

import paddle.nn.functional as F
from paddle.nn import Linear# 定义多层全连接神经网络
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义两层全连接隐含层,输出维度是10,当前设定隐含节点数为10,可根据任务调整self.fc1 = Linear(in_features=784, out_features=10)self.fc2 = Linear(in_features=10, out_features=10)# 定义一层全连接输出层,输出维度是1self.fc3 = Linear(in_features=10, out_features=1)# 定义网络的前向计算,隐含层激活函数为sigmoid,输出层不使用激活函数def forward(self, inputs):# inputs = paddle.reshape(inputs, [inputs.shape[0], 784])outputs1 = self.fc1(inputs)outputs1 = F.sigmoid(outputs1)outputs2 = self.fc2(outputs1)outputs2 = F.sigmoid(outputs2)outputs_final = self.fc3(outputs2)return outputs_final

然而,全连接神经网络模型并不适合图像分类模型,图像分类任务需要考虑图像数据的空间性,以及如何分类(波士顿房价预测是回归任务,是回归到一个具体数字,手写数字识别实际上是进行分类判断),对于图像识别和分类任务,我们需要引入卷积神经网络,Softmax激活函数以及交叉熵损失函数,整个流程如下图:

2.2 引入卷积神经网络

图像识别需要考虑数据的空间分布,更适合使用卷积神经网络模型,模型中包含卷积层(convolution)和池化层(subsampling),以及最后一个全连接层(fully connected)

关于卷积神经网络,可以参考这一篇:

PyTorch学习系列教程:卷积神经网络【CNN】 - 知乎

关于卷积核和输入,输出通道,可以参考这一篇:

如何理解卷积神经网络中的通道(channel)_卷积通道数_叹久01的博客-CSDN博客

​​

Python源码 - 卷积神经网络参考代码:

# 定义 SimpleNet 网络结构
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):def __init__(self):super(MNIST, self).__init__()# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)# 定义池化层,池化核的大小kernel_size为2,池化步长为2self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)# 定义一层全连接层,输出维度是1self.fc = Linear(in_features=980, out_features=1)# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出# 卷积层激活函数使用Relu,全连接层不使用激活函数def forward(self, inputs):x = self.conv1(inputs)x = F.relu(x)x = self.max_pool1(x)x = self.conv2(x)x = F.relu(x)x = self.max_pool2(x)x = paddle.reshape(x, [x.shape[0], -1])x = self.fc(x)return x

 2.3 分类函数Softmax

 为了进行分类判别,要通过引入Softmax函数到输出层,使得输出层的输出为不同类别概率的集合,并且所有概率之和为1,比如[0.1, 0.2, 0.7]

​​

比如,一个三个标签的分类模型(三分类)使用的Softmax输出层,从中可见原始输出的三个数字3、1、-3,经过Softmax层后转变成加和为1的三个概率值0.88、0.12、0。

​​

2.4 交叉熵损失函数

分类网络模型需要使用交叉熵损失函数不断训练更新模型参数,最终使得交叉熵趋于收敛,从而完成模型训练。

正确解标签对应的输出越大,交叉熵的值越接近0;当输出为1时,交叉熵误差为0。反之,如果正确解标签对应的输出越小,则交叉熵的值越大。 

​​

要想搞清楚交叉熵,推荐大家读一下这篇文章:损失函数:交叉熵详解 - 知乎

里面又牵涉到极大似然估计理论,推荐阅读这篇文章:极大似然估计思想的最简单解释_class_brick的博客-CSDN博客

2.5 学习率优化算法

学习率是优化器的一个参数,调整学习率看似是一件非常麻烦的事情,需要不断的调整步长,观察训练时间和Loss的变化。经过研究员的不断的实验,当前已经形成了四种比较成熟的优化算法:SGD、Momentum、AdaGrad和Adam,效果如 所示。

图3: 不同学习率算法效果示意图

  • SGD: 随机梯度下降算法,每次训练少量数据,抽样偏差导致的参数收敛过程中震荡。
  • Momentum: 引入物理“动量”的概念,累积速度,减少震荡,使参数更新的方向更稳定。
  • AdaGrad: 根据不同参数距离最优解的远近,动态调整学习率。学习率逐渐下降,依据各参数变化大小调整学习率。
  • Adam: 由于动量和自适应学习率两个优化思路是正交的,因此可以将两个思路结合起来,这就是当前广泛应用的算法。

2.6 图像预处理算法

在计算机视觉中,通常会对图像做一些随机的变化,产生相似但又不完全相同的样本。主要作用是扩大训练数据集,抑制过拟合,提升模型的泛化能力,常用的方法主要有以下几种:

  • 随机改变亮暗、对比度和颜色
  • 随机填充
  • 随机裁剪
  • 随机缩放
  • 随机翻转
  • 随机打乱真实框排列顺序

下面是分别使用numpy 实现这些数据增强方法。

2.6.1 随机改变亮暗、对比度和颜色等

import numpy as np
import cv2
from PIL import Image, ImageEnhance
import random# 随机改变亮暗、对比度和颜色等
def random_distort(img):# 随机改变亮度def random_brightness(img, lower=0.5, upper=1.5):e = np.random.uniform(lower, upper)return ImageEnhance.Brightness(img).enhance(e)# 随机改变对比度def random_contrast(img, lower=0.5, upper=1.5):e = np.random.uniform(lower, upper)return ImageEnhance.Contrast(img).enhance(e)# 随机改变颜色def random_color(img, lower=0.5, upper=1.5):e = np.random.uniform(lower, upper)return ImageEnhance.Color(img).enhance(e)ops = [random_brightness, random_contrast, random_color]np.random.shuffle(ops)img = Image.fromarray(img)img = ops[0](img)img = ops[1](img)img = ops[2](img)img = np.asarray(img)return img# 定义可视化函数,用于对比原图和图像增强的效果
import matplotlib.pyplot as plt
def visualize(srcimg, img_enhance):# 图像可视化plt.figure(num=2, figsize=(6,12))plt.subplot(1,2,1)plt.title('Src Image', color='#0000FF')plt.axis('off') # 不显示坐标轴plt.imshow(srcimg) # 显示原图片# 对原图做 随机改变亮暗、对比度和颜色等 数据增强srcimg_gtbox = records[0]['gt_bbox']srcimg_label = records[0]['gt_class']plt.subplot(1,2,2)plt.title('Enhance Image', color='#0000FF')plt.axis('off') # 不显示坐标轴plt.imshow(img_enhance)image_path = records[0]['im_file']
print("read image from file {}".format(image_path))
srcimg = Image.open(image_path)
# 将PIL读取的图像转换成array类型
srcimg = np.array(srcimg)# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
img_enhance = random_distort(srcimg)
visualize(srcimg, img_enhance)

2.6.2 随机填充

# 随机填充
def random_expand(img,gtboxes,max_ratio=4.,fill=None,keep_ratio=True,thresh=0.5):if random.random() > thresh:return img, gtboxesif max_ratio < 1.0:return img, gtboxesh, w, c = img.shaperatio_x = random.uniform(1, max_ratio)if keep_ratio:ratio_y = ratio_xelse:ratio_y = random.uniform(1, max_ratio)oh = int(h * ratio_y)ow = int(w * ratio_x)off_x = random.randint(0, ow - w)off_y = random.randint(0, oh - h)out_img = np.zeros((oh, ow, c))if fill and len(fill) == c:for i in range(c):out_img[:, :, i] = fill[i] * 255.0out_img[off_y:off_y + h, off_x:off_x + w, :] = imggtboxes[:, 0] = ((gtboxes[:, 0] * w) + off_x) / float(ow)gtboxes[:, 1] = ((gtboxes[:, 1] * h) + off_y) / float(oh)gtboxes[:, 2] = gtboxes[:, 2] / ratio_xgtboxes[:, 3] = gtboxes[:, 3] / ratio_yreturn out_img.astype('uint8'), gtboxes# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
srcimg_gtbox = records[0]['gt_bbox']
img_enhance, new_gtbox = random_expand(srcimg, srcimg_gtbox)
visualize(srcimg, img_enhance)

2.6.3 随机裁剪

随机裁剪之前需要先定义两个函数,multi_box_iou_xywhbox_crop这两个函数将被保存在box_utils.py文件中。

import numpy as npdef multi_box_iou_xywh(box1, box2):"""In this case, box1 or box2 can contain multi boxes.Only two cases can be processed in this method:1, box1 and box2 have the same shape, box1.shape == box2.shape2, either box1 or box2 contains only one box, len(box1) == 1 or len(box2) == 1If the shape of box1 and box2 does not match, and both of them contain multi boxes, it will be wrong."""assert box1.shape[-1] == 4, "Box1 shape[-1] should be 4."assert box2.shape[-1] == 4, "Box2 shape[-1] should be 4."b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2inter_x1 = np.maximum(b1_x1, b2_x1)inter_x2 = np.minimum(b1_x2, b2_x2)inter_y1 = np.maximum(b1_y1, b2_y1)inter_y2 = np.minimum(b1_y2, b2_y2)inter_w = inter_x2 - inter_x1inter_h = inter_y2 - inter_y1inter_w = np.clip(inter_w, a_min=0., a_max=None)inter_h = np.clip(inter_h, a_min=0., a_max=None)inter_area = inter_w * inter_hb1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)return inter_area / (b1_area + b2_area - inter_area)def box_crop(boxes, labels, crop, img_shape):x, y, w, h = map(float, crop)im_w, im_h = map(float, img_shape)boxes = boxes.copy()boxes[:, 0], boxes[:, 2] = (boxes[:, 0] - boxes[:, 2] / 2) * im_w, (boxes[:, 0] + boxes[:, 2] / 2) * im_wboxes[:, 1], boxes[:, 3] = (boxes[:, 1] - boxes[:, 3] / 2) * im_h, (boxes[:, 1] + boxes[:, 3] / 2) * im_hcrop_box = np.array([x, y, x + w, y + h])centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0mask = np.logical_and(crop_box[:2] <= centers, centers <= crop_box[2:]).all(axis=1)boxes[:, :2] = np.maximum(boxes[:, :2], crop_box[:2])boxes[:, 2:] = np.minimum(boxes[:, 2:], crop_box[2:])boxes[:, :2] -= crop_box[:2]boxes[:, 2:] -= crop_box[:2]mask = np.logical_and(mask, (boxes[:, :2] < boxes[:, 2:]).all(axis=1))boxes = boxes * np.expand_dims(mask.astype('float32'), axis=1)labels = labels * mask.astype('float32')boxes[:, 0], boxes[:, 2] = (boxes[:, 0] + boxes[:, 2]) / 2 / w, (boxes[:, 2] - boxes[:, 0]) / wboxes[:, 1], boxes[:, 3] = (boxes[:, 1] + boxes[:, 3]) / 2 / h, (boxes[:, 3] - boxes[:, 1]) / hreturn boxes, labels, mask.sum()# 随机裁剪
def random_crop(img,boxes,labels,scales=[0.3, 1.0],max_ratio=2.0,constraints=None,max_trial=50):if len(boxes) == 0:return img, boxesif not constraints:constraints = [(0.1, 1.0), (0.3, 1.0), (0.5, 1.0), (0.7, 1.0),(0.9, 1.0), (0.0, 1.0)]img = Image.fromarray(img)w, h = img.sizecrops = [(0, 0, w, h)]for min_iou, max_iou in constraints:for _ in range(max_trial):scale = random.uniform(scales[0], scales[1])aspect_ratio = random.uniform(max(1 / max_ratio, scale * scale), \min(max_ratio, 1 / scale / scale))crop_h = int(h * scale / np.sqrt(aspect_ratio))crop_w = int(w * scale * np.sqrt(aspect_ratio))crop_x = random.randrange(w - crop_w)crop_y = random.randrange(h - crop_h)crop_box = np.array([[(crop_x + crop_w / 2.0) / w,(crop_y + crop_h / 2.0) / h,crop_w / float(w), crop_h / float(h)]])iou = multi_box_iou_xywh(crop_box, boxes)if min_iou <= iou.min() and max_iou >= iou.max():crops.append((crop_x, crop_y, crop_w, crop_h))breakwhile crops:crop = crops.pop(np.random.randint(0, len(crops)))crop_boxes, crop_labels, box_num = box_crop(boxes, labels, crop, (w, h))if box_num < 1:continueimg = img.crop((crop[0], crop[1], crop[0] + crop[2],crop[1] + crop[3])).resize(img.size, Image.LANCZOS)img = np.asarray(img)return img, crop_boxes, crop_labelsimg = np.asarray(img)return img, boxes, labels# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
srcimg_gtbox = records[0]['gt_bbox']
srcimg_label = records[0]['gt_class']img_enhance, new_labels, mask = random_crop(srcimg, srcimg_gtbox, srcimg_label)
visualize(srcimg, img_enhance)

2.6.4 随机缩放

# 随机缩放
def random_interp(img, size, interp=None):interp_method = [cv2.INTER_NEAREST,cv2.INTER_LINEAR,cv2.INTER_AREA,cv2.INTER_CUBIC,cv2.INTER_LANCZOS4,]if not interp or interp not in interp_method:interp = interp_method[random.randint(0, len(interp_method) - 1)]h, w, _ = img.shapeim_scale_x = size / float(w)im_scale_y = size / float(h)img = cv2.resize(img, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=interp)return img# 对原图做 随机缩放
img_enhance = random_interp(srcimg, 640)
visualize(srcimg, img_enhance)

2.6.5 随机翻转

# 随机翻转
def random_flip(img, gtboxes, thresh=0.5):if random.random() > thresh:img = img[:, ::-1, :]gtboxes[:, 0] = 1.0 - gtboxes[:, 0]return img, gtboxes# 对原图做 随机改变亮暗、对比度和颜色等 数据增强
img_enhance, box_enhance = random_flip(srcimg, srcimg_gtbox)
visualize(srcimg, img_enhance)

2.6.6 随机打乱真实框排列顺序

# 随机打乱真实框排列顺序
def shuffle_gtbox(gtbox, gtlabel):gt = np.concatenate([gtbox, gtlabel[:, np.newaxis]], axis=1)idx = np.arange(gt.shape[0])np.random.shuffle(idx)gt = gt[idx, :]return gt[:, :4], gt[:, 4]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/259161.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#系列-使用 Minio 做图片服务器实现图片上传 和下载(13)

1、Minio 服务器下载和安装 要在本地安装和运行 MinIO 服务器&#xff0c;你可以按照以下 步骤进行操作&#xff1a; 1. 访问 MinIO 的官方网站&#xff1a;https://min.io/&#xff0c;然后 点击页面上的”Download”按钮。 2. 在下载页面上&#xff0c;选择适合你操作系统的 …

论文阅读-EMS: History-Driven Mutation for Coverage-based Fuzzing(2022)模糊测试

一、背景 本文研究了基于覆盖率的模糊测试中的历史驱动变异技术。之前的研究主要采用自适应变异策略或集成约束求解技术来探索触发独特路径和崩溃的测试用例&#xff0c;但它们缺乏对模糊测试历史的细粒度重用&#xff0c;即它们在不同的模糊测试试验之间很大程度上未能正确利用…

Vue2学习第二天

Vue2 学习第二天 1. 数据绑定 Vue 中有 2 种数据绑定的方式&#xff1a; 单向绑定(v-bind)&#xff1a;数据只能从 data 流向页面。双向绑定(v-model)&#xff1a;数据不仅能从 data 流向页面&#xff0c;还可以从页面流向 data。 备注&#xff1a; 双向绑定一般都应用在表单…

javaweb学习day03(JS+DOM)

一、javascript入门 1 官方文档 地址: https://www.w3school.com.cn/js/index.asp离线文档: W3School 离线手册(2017.03.11 版).chm 2 基本说明 JavaScript 能改变 HTML 内容&#xff0c;能改变 HTML 属性&#xff0c;能改变 HTML 样式 (CSS)&#xff0c;能完成 页面的数据…

基于Java SSM框架实现疫情防控系统项目【项目源码】

基于java的SSM框架实现疫情防控系统演示 Java技术 Java技术它是一个容易让人学会和使用的一门服务器语言。它在编程的过程当中只需要很少的知识就能建立起一个真正的交互站点。对于这个教程来说它并不需要你完全去了解这种语言&#xff0c;只要能快速融入web站点就可以&#x…

2024春日营销三大内容趋势,种草爆文轻松get丨小红书数据分析

春季是市场迎来消费焕活的新周期&#xff0c;也是新一年品牌实现生意高速起步的必争节点。一年之“计”在于春&#xff0c;春日营销&#xff0c;吹响品牌营销第一声号角。那么&#xff0c;春日营销在小红书上有何内容趋势&#xff0c;跟着小编的脚步一起来看看~ 内容趋势 1、亲…

34461A 数字万用表,六位半,Truevolt DMM

01 34461A 数字万用表&#xff0c;六位半 产品综述&#xff1a; 34461A 六位半万用表是替代 Keysight 34401A 数字万用表&#xff08;此前为 Agilent 34401A&#xff09;的新一代产品。 34461A 拥有 Truevolt 系列数字万用表的全新图形显示界面、先进的分析模式和内置数学函…

JAVA JDK1.8下载安装

1、官网下载地址Java Downloads | Oracle 2、双击运行该文件 3、 4、 5、 6、安装完成后&#xff0c;现在来设置 环境变量 7、新建系统变量 8、修改Path变量 9、配置完成安装完成

6.s081 学习实验记录(九)lock parallelism

文章目录 一、Memory allocator简介提示实验代码实验结果 二、Buffer cache简介提示实验代码实验结果 该实验将重构某些代码以提高并发度。 首先切换到lock分支&#xff1a; git fetchgit checkout lockmake clean 一、Memory allocator 简介 user/kalloctest 这个程序会对…

Unity 2D Spine 外发光实现思路

Unity 2D Spine 外发光实现思路 前言 对于3D骨骼&#xff0c;要做外发光可以之间通过向法线方向延申来实现。 但是对于2D骨骼&#xff0c;各顶点的法线没有向3D骨骼那样拥有垂直于面的特性&#xff0c;那我们如何做2D骨骼的外发光效果呢&#xff1f; 理论基础 我们要知道&a…

Spring Boot 笔记 010 创建接口_更新用户头像

1.1.1 usercontroller中添加updateAvatar&#xff0c;校验是否为url PatchMapping("updateAvatar")public Result updateAvatar(RequestParam URL String avatarUrl) {userService.updateAvatar(avatarUrl);return Result.success();} 1.1.2 userservice //更新头像…

2.18通过字符设备驱动分步注册过程实现LED驱动的编写,编写应用程序测试

应用程序&#xff1a; #include<stdlib.h> #include<stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include<unistd.h> #include<string.h> #include<sys/ioctl.h> #include"myled.h&quo…

JVM-JVM调优基础(理论)

申明&#xff1a;文章内容是本人学习极客时间课程所写&#xff0c;作为笔记进行记录&#xff0c;文字和图片基本来源于课程资料&#xff0c;在某些地方会插入一点自己的理解&#xff0c;未用于商业用途&#xff0c;侵删。 原资料地址&#xff1a;课程资料 JVM参数 标准参数 …

蓝桥杯:C++排序

排序 排序和排列是算法题目常见的基本算法。几乎每次蓝桥杯软件类大赛都有题目会用到排序或排列。常见的排序算法如下。 第(3)种排序算法不是基于比较的&#xff0c;而是对数值按位划分&#xff0c;按照以空间换取时间的思路来排序。看起来它们的复杂度更好&#xff0c;但实际…

ADC--模拟量转换成数字量

目录 一、ADC硬件组成七大部分&#xff1a; 二、单次转换&#xff0c;连续转换&#xff0c;不连续采样模式&#xff0c;扫描模式区别 1、举例(5种组合情况) 2、模拟看门狗中断的作用&#xff1a; 三、MCU使用ADC步骤 一、ADC硬件组成七大部分&#xff1a; ①输入电压&#…

Java数字孪生智慧工地数据大屏APP项目源码

目录 智慧工地云平台核心功能 1.劳务管理 2.视频监控 3.安全教育 4.进度管理 5.环境监测 6.塔吊监控 7.升降机监控 8.工地广播 9.深基坑高支模 10.AI识别 11.安全质量 智慧工地建设的价值和意义 危大工程管理 智慧工地聚焦施工现场一线生产活动&#xff0c;利用物…

使用Python生成二维码的完整指南

无边落木萧萧下&#xff0c;不如跟着可莉一起游~ 可莉将这篇博客收录在了&#xff1a;《Python》 可莉推荐的优质博主首页&#xff1a;Kevin ’ s blog 本文将介绍如何使用Python中的qrcode库来生成二维码。通过简单的代码示例和详细解释&#xff0c;读者将学习如何在Python中轻…

数据结构-双指针法

介绍 双指针法是一种可以在O&#xff08;n&#xff09;时间复杂度内解决数组、链表、字符串等数据结构相关的问题的方法。核心思想为使用两个指针在不同位置遍历数组或链表&#xff0c;从而实现特定操作。 常见的双指针法有 1.快慢指针&#xff1a;快指针每次移动两步&…

单测的思路

文章目录 单测的分类方法的单测生成工具的对比生成步骤 接口的单测mock步骤部分依赖mock的方式 场景的单测参考 单测的分类 单元测试&#xff08;Unit Testing&#xff09;是一种软件开发中的测试方法&#xff0c;它的主要目的是确保软件中的最小可测试单元&#xff08;通常是…

(07)Hive——窗口函数详解

一、 窗口函数知识点 1.1 窗户函数的定义 窗口函数可以拆分为【窗口函数】。窗口函数官网指路&#xff1a; LanguageManual WindowingAndAnalytics - Apache Hive - Apache Software Foundationhttps://cwiki.apache.org/confluence/display/Hive/LanguageManual%20Windowing…