【C++学习手札】多态:掌握面向对象编程的动态绑定与继承机制(深入)

                                               🎬慕斯主页修仙—别有洞天

                                              ♈️今日夜电波:世界上的另一个我

                                                                1:02━━━━━━️💟──────── 3:58
                                                                    🔄   ◀️   ⏸   ▶️    ☰  

                                      💗关注👍点赞🙌收藏您的每一次鼓励都是对我莫大的支持😍


目录

多态的原理

首先理解虚函数表

正式理解多态的原理

一些拓展

多态对于引用、指针和对象

虚表的拓展

多继承中的虚函数表

先了解如何打印虚函数表

然后理解多继承中的虚函数表

方法一:加上base1的大小

方法二:切片

结论


多态的原理

首先理解虚函数表

class Base
{
public:
virtual void Func1()
{
cout << "Func1()" << endl;
}
private:
int _b = 1;
};

        请问sizeof(Base)的大小为多少?

        答案为:x64下16字节,x86下8字节

        解析如下:

        Base类中包涵着int类型的成员变量占4字节,而由于有虚函数,因此会有一个虚函表的指针vfptr,因此根据内存对齐,得到上述答案。

        这时就会有疑惑了?虚函数表指针和虚函数表是什么呢?

        如下通过监视窗口可以看到vfptr指向了一个数组(也就是虚函数表),而数组中存储着虚函数指针:

        继续分析,我们在上述代码的基础上增加代码:

class Base
{
public:virtual void Func1(){cout << "Base::Func1()" << endl;}virtual void Func2(){cout << "Base::Func2()" << endl;}void Func3(){cout << "Base::Func3()" << endl;}
private:int _b = 1;
};
class Derive : public Base
{
public:virtual void Func1(){cout << "Derive::Func1()" << endl;}
private:int _d = 2;
};
int main()
{Base b;Derive d;return 0;
}

        通过观察和测试,我们发现了以下几点问题:

  1. 派生类对象d中也有一个虚表指针,d对象由两部分构成,一部分是父类继承下来的成员,虚表指针也就是存在部分的另一部分是自己的成员。
  2. 基类b对象和派生类d对象虚表是不一样的,这里我们发现Func1完成了重写,所以d的虚表中存的是重写的Derive::Func1,所以虚函数的重写也叫作覆盖,覆盖就是指虚表中虚函数的覆盖。重写是语法的叫法,覆盖是原理层的叫法。
  3. 另外Func2继承下来后是虚函数,所以放进了虚表,Func3也继承下来了,但是不是虚函数,所以不会放进虚表。
  4. 虚函数表本质是一个存虚函数指针的指针数组,一般情况这个数组最后面放了一个nullptr。
  5. 总结一下派生类的虚表生成:a.先将基类中的虚表内容拷贝一份到派生类虚表中 b.如果派生类重写了基类中某个虚函数,用派生类自己的虚函数覆盖虚表中基类的虚函数 c.派生类自己新增加的虚函数按其在派生类中的声明次序增加到派生类虚表的最后。
  6. 这里还有一个童鞋们很容易混淆的问题:虚函数存在哪的?虚表存在哪的? 答:虚函数存在虚表,虚表存在对象中。注意上面的回答的错的。但是很多童鞋都是这样深以为然的。注意虚表存的是虚函数指针,不是虚函数,虚函数和普通函数一样的,都是存在代码段的,只是他的指针又存到了虚表中。另外对象中存的不是虚表,存的是虚表指针。那么虚表存在哪的呢?实际我们去验证一下会发现vs下是存在代码段的,Linux g++下大家自己去验证?

正式理解多态的原理

        见以下代码:

class Person {
public:virtual void BuyTicket() { cout << "买票-全价" << endl; }virtual void vv() { cout << "打折" << endl; }int a = 0;
};
class Student : public Person {
public:virtual void BuyTicket() { cout << "买票-半价" << endl; }int b = 1;
};
void Func(Person& p)
{p.BuyTicket();
}
int main()
{Person m;Func(m);Student s;Func(s);return 0;
}

        从监视中很明显的看到,子类继承了父类的虚函数表,但是很明显的看到虚函数表中我们的BuyTicket()的虚函数指针地址改变了,而vv()确没有改变,这就很明显了,因为BuyTicket()被重写了,而vv()没有,而重写也有另外一个名字:覆盖当我们重写了虚函数,那么就会覆盖对应虚函数在虚函数表中的指针

        内存方面观察:

        可以看到其中vfptr中存储的地址是发生了改变的,也就是说我们可以根据这个地址找到新的一张虚函数表,在前面我们学习过“切片”的概念,我们知道当以父类的类型去访问子类的类型会发生“切片”使得只访问父类的类型的空间,也就是说我们只访问上图中蓝色框内的内容,再结合上上张图监视中如果子类重写了虚函数则虚函数表中虚函数指针改变。当我们调用对应的虚函数时,就会调用子函数的虚函数而不是父类的虚函数!这就是多态实现的原理!因此,多态中指向父类调用父类,指向子类调用子类!

一些拓展

多态对于引用、指针和对象

        为什么多态只允许引用和指针呢?我们都知道引用的底层实现实际上还是指针,多态的实现就是指向子类对象中切割出来的那一部分!而对象只会拷贝子类对象中父类的那一部分,但是不会拷贝虚函数表指针。为什么呢?因为如果允许虚函数表指针的拷贝会造成二义性,如下:

int main()
{Person m;Student s;m=s;Func(m);Func(s);return 0;
}

        如果对象可以像引用和指针一样,那么当拷贝了虚函数表指针后,你会发现我们实现不了多态中指向父类调用父类,指向子类调用子类的场景。也会造成析构函数调用调错等等的错误。

虚表的拓展

        如果子类与父类中不重写虚函数,子类与父类的续虚函数表一样吗?不一样!他们存在不同的位置!虽然他们的内容是一样的!同类对象的虚函数表一样吗?一样!

        总结,不同的类不会共用虚函数表,只有相同的类才会共用虚函数表!

多继承中的虚函数表

先了解如何打印虚函数表

        我们都知道虚函数表是一个函数指针数组,并且数组最后一位是以nullptr结尾的。因此,我们可以根据该特性打印虚函数表:

typedef void(*VFPTR) ();
void PrintVTable(VFPTR* vTable)
{// 依次取虚表中的虚函数指针打印并调用。调用就可以看出存的是哪个函数cout << " 虚表地址>" << vTable << endl;for (size_t i = 0; vTable[i] != nullptr; ++i){printf(" 第%d个虚函数地址 :0X%x,->", i, vTable[i]);VFPTR f = vTable[i];f();}cout << endl;
}

        例子,打印单继承的虚函数表:

class Base {
public:virtual void func1() { cout << "Base::func1" << endl; }virtual void func2() { cout << "Base::func2" << endl; }
private:int a;
};
class Derive :public Base {
public:virtual void func1() { cout << "Derive::func1" << endl; }virtual void func3() { cout << "Derive::func3" << endl; }virtual void func4() { cout << "Derive::func4" << endl; }
private:int b;
};typedef void(*VFPTR) ();
void PrintVTable(VFPTR* vTable)
{// 依次取虚表中的虚函数指针打印并调用。调用就可以看出存的是哪个函数cout << " 虚表地址>" << vTable << endl;for (size_t i = 0; vTable[i] != nullptr; ++i){printf(" 第%d个虚函数地址 :0X%x,->", i, vTable[i]);VFPTR f = vTable[i];f();}cout << endl;
}int main()
{Base b;Derive d;VFPTR * vTableb = (VFPTR*)(*((int*)&b));PrintVTable(vTableb);VFPTR* vTabled = (VFPTR*)(*((int*)&d));PrintVTable(vTabled);return 0;
}

        思路:取出b、d对象的头4bytes,就是虚表的指针,前面我们说了虚函数表本质是一个存虚函数指针的指针数组,这个数组最后面放了一个nullptr。需要注意的是这是在x86的运行环境下的,如果是x64则需强转为long long:

        1.先取b的地址,强转成一个int*的指针

        2.再解引用取值,就取到了b对象头4bytes的值,这个值就是指向虚表的指针

        3.再强转成VFPTR*,因为虚表就是一个存VFPTR类型(虚函数指针类型)的数组。

        4.虚表指针传递给PrintVTable进行打印虚表

        5.需要说明的是这个打印虚表的代码经常会崩溃,因为编译器有时对虚表的处理不干净,虚表最后面没有放nullptr,导致越界,这是编译器的问题。我们只需要点目录栏的 - 生成 - 清理解决方案,再编译就好了。

然后理解多继承中的虚函数表

        概念:

C++中的多继承是指一个派生类可以同时从多个基类派生,从而继承它们的属性和行为

        多继承是面向对象编程中一个重要的概念,它允许一个类继承多个其他类的成员。这样做有几个目的:

  • 代码重用:多继承可以提高代码的重用性,因为派生类可以访 问所有基类的公有成员和保护成员。
  • 功能组合:通过继承多个类,派生类可以将不同基类的功能组合在一起,形成更复杂的功能。

        然而,多继承也可能带来一些问题,如菱形继承问题,这可能导致二义性。为了解决这个问题,C++引入了虚基类的概念。

        如下为一段多继承的代码,可以看到drive继承了base1和base2:

class base1 {
public:virtual void func1() { cout << "base1::func1" << endl; }virtual void func2() { cout << "base1::func2" << endl; }
private:int b1;
};class base2 {
public:virtual void func1() { cout << "base2::func1" << endl; }virtual void func2() { cout << "base2::func2" << endl; }
private:int b2;
};class derive : public base1, public base2 {
public:virtual void func1() { cout << "derive::func1" << endl;}virtual void func3() { cout << "derive::func3" << endl; }
private:int d1;
};

        那么他的虚函数表又是什么样的呢?如下:

        可以看到正如我们猜测的那样,它包含着两张虚函数表!然而,我们在derive中重写了func1()函数,以及额外添加了一个func3()函数,但是并没有在监视中显示,这是因为编译器并没有让你实际的看到,也就是说编译器在骗人,实际上就是在其中的一张表当中,可以理解为监视的一个bug。我们通过上述打印虚函数表可以看到具体的效果(注意此为x64环境下):

typedef void(*VFPTR) ();
void PrintVTable(VFPTR* vTable)
{// 依次取虚表中的虚函数指针打印并调用。调用就可以看出存的是哪个函数cout << " 虚表地址>" << vTable << endl;for (size_t i = 0; vTable[i] != nullptr; ++i){printf(" 第%d个虚函数地址 :0X%x,->", i, vTable[i]);VFPTR f = vTable[i];f();}cout << endl;
}class base1 {
public:virtual void func1() { cout << "base1::func1" << endl; }virtual void func2() { cout << "base1::func2" << endl; }
private:int b1;
};class base2 {
public:virtual void func1() { cout << "base2::func1" << endl; }virtual void func2() { cout << "base2::func2" << endl; }
private:int b2;
};class derive : public base1, public base2 {
public:virtual void func1() { cout << "derive::func1" << endl;}virtual void func3() { cout << "derive::func3" << endl; }
private:int d1;
};int main()
{cout << "base1:" << endl;base1 b;PrintVTable((VFPTR*)(*(long long*)&b));cout << "base2:" << endl;base2 c;PrintVTable((VFPTR*)(*(long long*)&c));cout << "derive 表1:" << endl;derive d;PrintVTable((VFPTR*)(*(long long*)&d));//printvft((vfunc*)(*(int*)((char*)&d+sizeof(base1))));cout << "derive 表2:" << endl;base2* ptr = &d;PrintVTable((VFPTR*)(*(long long*)ptr));
}

        得到第一个虚基表的方法很简单,因为第一个虚基表的指针正好处在前8个字节处,只需要向上面一样进行强转即可,如果要找到第二个虚基表则有如下两种方法:

方法一:加上base1的大小
	printvft((vfunc*)(*(int*)((char*)&d+sizeof(base1))));

        也就是加上sizeof(base1)即可,但是!需要注意的是d的类型是Derive,在&d后变为Derive* 的一个指针,+1 跳转的是Derive类型的字节大小!而我们想要的是每次+1跳转1个字节,所以需要强制转换char* !

方法二:切片
	base2* ptr = &d;PrintVTable((VFPTR*)(*(long long*)ptr));

        把d利用切片的原理给到ptr,然后再按照上面强转的原理找到虚基表即可!

结论

        如下为上面代码的运行结果:

        可以看到上面的图示,我们可以得出相应的结论:多继承中重写的虚函数以及新增的虚函数都是在第一个虚基表当中进行修改以及增加的!如果重写的虚函数在其他基类中也有对应的虚函数,那么继承下来的虚基表也需要重写。

        更加详细的图解如下:

​        这里又引申出来一个问题,为什么其derive继承的两个虚基表中func1()的地址不同呢?这里就需要从汇编的角度进行理解了:

        在以上的代码的基础上调试下面这段代码(x86环境下),通过反汇编可得结果如下:

	derive d;base1* p1 = &d;p1->func1();base2* p2 = &d;p2->func1();

        ​从上图的图示可以看到p1只经过了一次jmp就找到了derive中的func1()的地址,而p2则是经过了多次的jmp才找到func1()地址。这是因为:p1的调用的地址恰好与derive* 类型的this指针的地址是重叠的,因此不需要去找这个地址,而p2要经过蓝框中的“8字节的偏移”才能找到this指针(可以看到有ecx标识(ecx是存储this指针的)),才能指向derive对象的开始,才可以调用derive的func1()(毕竟fun1也可能调用成员函数、成员变量等等)。

        总结:这里是为了修正this指针指向derive对象,这里调用的是derive重写的func1()。

 


                      感谢你耐心的看到这里ღ( ´・ᴗ・` )比心,如有哪里有错误请踢一脚作者o(╥﹏╥)o! 

                                       

                                                                        给个三连再走嘛~  

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/259206.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python函数(一)

目录 一、定义函数 &#xff08;一&#xff09;向函数传递信息 &#xff08;二&#xff09;实参和形参 二、传递实参 &#xff08;一&#xff09;位置实参 &#xff08;二&#xff09;关键字实参 &#xff08;三&#xff09;默认值 &#xff08;四&#xff09;等效的函…

Code Composer Studio (CCS) - Comment (注释)

Code Composer Studio [CCS] - Comment [注释] References Add Block Comment: 选中几行代码 -> 鼠标右键 -> Source -> Add Block Comment shortcut key: Ctrl Shift / Remove Block Comment: 选中几行代码->鼠标右键->Source->Remove Block Comment s…

redis为什么使用跳跃表而不是树

Redis中支持五种数据类型中有序集合Sorted Set的底层数据结构使用的跳跃表&#xff0c;为何不使用其他的如平衡二叉树、b树等数据结构呢&#xff1f; 1&#xff0c;redis的设计目标、性能需求&#xff1a; redis是高性能的非关系型&#xff08;NoSQL&#xff09;内存键值数据…

12.QT文件对话框 文件的弹窗选择-QFileDialog

目录 前言&#xff1a; 技能&#xff1a; 内容&#xff1a; 1. 界面 2.信号槽 3.其他函数 参考&#xff1a; 前言&#xff1a; 通过按钮实现文件弹窗选择以及关联的操作 效果图就和平时用电脑弹出的选文件对话框一样 技能&#xff1a; QString filename QFileDialog::ge…

蓝桥杯官网填空题(寻找整数)

问题描述 本题为填空题&#xff0c;只需要算出结果后&#xff0c;在代码中使用输出语句将所填结果输出即可。 有一个不超过 10^17 的正整数 n&#xff0c;知道这个数除以 2 至 49 后的余数如下表所示&#xff0c;求这个正整数最小是多少。 运行限制 最大运行时间&#xff1a;…

Pr教程1-8节笔记

第一课 认识PR以及PR的学习方法 学习任务&#xff1a; 1、熟练掌握PR软件&#xff0c;同时掌握剪辑技术以及常用于制作特效的效果器。 2、认识PR软件的名称、主要功能以及用途作用。 3、明白学习PR我们能做些什么以及PR的学习方法。 知识内容&#xff1a; 1、PR是专门用于视…

EasyUI动态加载组件

要实现如下的效果&#xff0c;在表格中显示进度条 主要是需要再次初始化组件&#xff0c;借用ChatGPT的意思是&#xff1a; 在许多 JavaScript UI 框架中&#xff0c;包括 EasyUI&#xff0c;在动态地创建或插入新的 DOM 元素后&#xff0c;通常需要手动初始化相关的组件或特性…

HarmonyOS—状态管理概述

在前文的描述中&#xff0c;我们构建的页面多为静态界面。如果希望构建一个动态的、有交互的界面&#xff0c;就需要引入“状态”的概念。 图1 效果图 上面的示例中&#xff0c;用户与应用程序的交互触发了文本状态变更&#xff0c;状态变更引起了UI渲染&#xff0c;UI从“He…

华为23年9月笔试原题,巨详细题解,附有LeetCode测试链接

文章目录 前言思路主要思路关于f函数的剖析Code就到这&#xff0c;铁子们下期见&#xff01;&#xff01;&#xff01;&#xff01; 前言 铁子们好啊&#xff01;今天阿辉又给大家来更新新一道好题&#xff0c;下面链接是23年9月27的华为笔试原题&#xff0c;LeetCode上面的ha…

论文阅读-Pegasus:通过网络内一致性目录容忍分布式存储中的偏斜工作负载

论文名称&#xff1a;Pegasus: Tolerating Skewed Workloads in Distributed Storage with In-Network Coherence Directories 摘要 高性能分布式存储系统面临着由于偏斜和动态工作负载引起的负载不平衡的挑战。本文介绍了Pegasus&#xff0c;这是一个利用新一代可编程交换机…

cool Node后端 中实现中间件的书写

1.需求 在node后端中&#xff0c;想实现一个专门鉴权的文件配置&#xff0c;可以这样来解释 就是 有些接口需要token调用接口&#xff0c;有些接口不需要使用token 调用 这期来详细说明一下 什么是中间件中间件顾名思义是指在请求和响应中间,进行请求数据的拦截处理&#xf…

解锁Spring Boot中的设计模式—04.桥接模式:探索【桥接模式】的奥秘与应用实践!

桥接模式 桥接模式也称为桥梁模式、接口模式或者柄体&#xff08;Handle and Body&#xff09;模式&#xff0c;是将抽象部分与他的具体实现部分分离&#xff0c;使它们都可以独立地变化&#xff0c;通过组合的方式建立两个类之间的联系&#xff0c;而不是继承。 桥接模式是一种…

《区块链公链数据分析简易速速上手小册》第10章:未来趋势和挑战(2024 最新版)

文章目录 10.1 区块链技术的发展方向10.1.1 基础知识10.1.2 重点案例:构建一个简单的智能合约步骤1: 创建智能合约步骤2: 部署智能合约步骤3: 使用Python与智能合约交互结语10.1.3 拓展案例 1:探索 DeFi 应用准备工作实现步骤步骤1: 获取Compound市场数据步骤2: 分析借贷市场…

给定n个结点m条边的简单无向图,判断该图是否存在鱼形状的子图:有一个环,其中有一个结点有另外两条边,连向不在环内的两个结点。若有,输出子图的连边

题目 思路&#xff1a; #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back #define fi first #define se second #define lson p << 1 #define rson p << 1 | 1 const int maxn 1e6 5, inf 1e18 * 3, maxm 4e4 …

如何基于YAML设计接口自动化测试框架?看完秒会!

在设计自动化测试框架的时候&#xff0c;我们会经常将测试数据保存在外部的文件&#xff08;如Excel、YAML、CSV&#xff09;或者数据库中&#xff0c;实现脚本与数据解耦&#xff0c;方便后期维护。目前非常多的自动化测试框架采用通过Excel或者YAML文件直接编写测试用例&…

【Leetcode刷题笔记】27. 移除元素

原题链接 Leetcode 27. 移除元素 题目 给你一个数组 nums 和一个值 val&#xff0c;你需要原地移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。不要使用额外的数组空间&#xff0c;你必须仅使用 O(1) 额外空间并原地修改输入数组。元素的顺序可以改变。…

【MySQL】学习多表查询和笛卡尔积

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-N8PeTKG6uLu4bJuM {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

解锁Spring Boot中的设计模式—02.解释器模式:探索【解释器模式】的奥秘与应用实践!

解释器模式 1.简介 解释器模式&#xff08;Interpreter Pattern&#xff09;是一种行为设计模式&#xff0c;它用于定义语言的文法&#xff0c;并且解释语言中的表达式。在Java中&#xff0c;解释器模式可以用于构建解释器以解析特定的语言或表达式&#xff0c;如数学表达式、…

Unity中,C#的事件与委托区别和经典实例

文章目录 实例1&#xff1a;委托&#xff08;Delegate&#xff09;的基本用法实例2&#xff1a;事件&#xff08;Event&#xff09;的声明与订阅实例3&#xff1a;Unity引擎中的委托实例 - UI Button.onClick实例4&#xff1a;事件&#xff08;Event&#xff09;的安全性实例5&…

C#安装CommunityToolkit.Mvvm依赖

这里需要有一定C#基础&#xff0c; 首先找到右边的解决方案&#xff0c;右键依赖项 然后选择nuget管理 这里给大家扩展一下nuget的国内源&#xff08;https://nuget.cdn.azure.cn/v3/index.json&#xff09; 然后搜自己想要的依赖性&#xff0c;比如CommunityToolkit.Mvvm 再点…