【论文解读】Latency-Aware Collaborative Perception

Latency-Aware Collaborative Perception

  • 摘要
  • 引言
  • 方法
    • System
    • SyncNet
  • 实验

摘要

协作感知最近显示出提高单智能体感知感知能力的巨大潜力。现有的协同感知方法通常考虑理想的通信环境。然而,在实践中,通信系统不可避免地存在延迟问题,导致安全关键应用中潜在的性能下降和高风险,如自动驾驶。为了减轻不可避免的延迟造成的影响,从机器学习的角度来看,我们提出了第一个延迟感知协同感知系统,该系统从多个代理主动适应异步感知特征到同一个时间戳,提高了协作的鲁棒性和有效性。为了实现这种特征级同步,我们提出了一种新的延迟补偿模块SyncNet,该模块利用特征注意共生估计和时间调制技术。实验结果表明,所提出的具有SyncNet的延迟感知协同感知系统在通信延迟场景下的性能优于目前最先进的协同感知方法15.6%,在严重延迟下保持协同感知优于单一智能体感知

引言

为了解决延迟问题,从机器学习的角度来看,我们提出了第一个延迟感知协同感知系统,该系统从多个代理主动适应异步感知特征到相同的时间戳,提高了协作的鲁棒性和有效性。如图2所示,我们的延迟感知协同感知系统遵循中间协作框架[15],由五个组件组成:
i)编码模块,从原始数据中提取感知特征;
ii)通信模块,在不同的通信延迟下跨代理传输感知特征;
iii)延迟补偿模块,将多个agent的特征同步到同一个时间戳;
iv)融合模块,聚合所有同步的特征,生成融合特征;
v)解码模块,采用融合特征得到最终的感知输出。
我们的延迟感知协同感知系统的主要优点是它能够在聚合之前同步协作特征,减轻延迟引起的效果,而不是直接聚合接收到的异步特征
在这里插入图片描述
图2:提出的延迟感知协同感知系统概述:关键模块是延迟补偿模块。为了实现这一点,我们提出了SyncNet,它利用历史协作信息从延迟问题引起的多个代理同步异步信息。

该系统的关键部件是延迟补偿模块,旨在实现特征级同步。为了实现这一点,我们提出了一种新的SyncNet,它利用历史协作信息来同时估计当前特征和相应的协作注意力,这两者由于延迟而未知。与常见的时间序列预测方法相比,所提出的SyncNet有两个主要区别:
i)特征水平估计,而不是输出水平预测;
ii)耦合特征和相关协作注意力的估计,而不是预测单个输出

我们的主要贡献:

  • 我们首次提出了协作感知中的通信延迟挑战,并提出了一种新的延迟感知协作感知系统,该系统通过减轻不可避免的通信延迟的影响来促进强大的多主体感知。
  • 我们提出了一种新的延迟补偿模块,称为SyncNet,以实现特征级同步。它实现了对两类关键协作信息的共生估计,包括中间特征和协作注意力,相互增强。
  • 我们进行了全面的实验,结果表明,与之前的方法相比,我们提出的SyncNet在延迟场景中实现了巨大的性能改进,并在严重延迟的情况下保持了协作感知优于单代理感知。

方法

System

由于在现实的通信系统中,通信延迟是不可避免的,因此我们重点关注一个感知延迟的协同感知系统;也就是说,给定一个具有不可控制延迟的非理想通信信道,我们的目标是通过减轻延迟的影响来优化每个代理的感知能力。
我们认为在一个场景中有N个智能体感知环境。设X(t)i、F(t)i和Y(t)i分别为第i个智能体在时间戳t的原始观测值、感知特征和最终感知输出;τ (t)j→i为第j个agent向第i个agent传输数据的时间延迟(latency);W(t)j→代表agent j和agent i在时间戳t时的协作注意力。协作注意力由可学习网络fattention(F(t)i, F(t)j)计算,在协作感知系统的所有协作特征之间点明智地分配注意力。注意,i)延迟值τ (t)j→i是时变的,我们省略了它的上标t只是为了简化符号;ii)本工作认为协作发生在离散时间戳,并且τ是离散的,因为每个代理具有一定的观测采样率。实验结果还验证了在合理小的时间间隔内对连续时间进行离散时,得到的失配较小。然后,将提出的延迟感知协同感知表述为
在这里插入图片描述
其中,[F(t)j]为同步后第j个智能体在时间戳t处的估计特征,[W(t)j→i]为第i个智能体与第n个智能体在时间戳t处的估计协作注意力,[H(t)i]为第i个智能体在时间戳t处的估计协作信息聚合后的估计特征,[Niis]为第i个智能体的邻居,k为超参数。
步骤(1a)考虑从观测数据中提取感知特征,其中fencoder(·)为编码网络。在步骤(1b)中,我们从其他具有不同延迟时间的智能体接收感知特征。为了补偿延迟,步骤(1c)通过利用来自同一代理的历史特征和自我代理i感知的实时特征来估计时间戳t的特征和协作注意力,其中c(·)表示估计网络。这里我们假设每个智能体可以在内存中存储k帧的历史特征。步骤(1d)融合了所有估计的协作信息。最后,步骤(1e)输出最终感知输出,其中fdecoder(·)为解码器网络。与图2对应,步骤(1a)和(1b)构成编码模块;步骤(1c)有助于延迟补偿模块;步骤(1d)为延时融合模块;步骤(1e)构成解码模块。
提出的延迟感知系统有四个优点:1)我们明确地将通信延迟纳入协作感知系统的设计中,这在以前的工作中从未做过;见(1b) (1c);Ii)我们通过从历史协作信息中估计缺失信息来减轻延迟的影响;见(1 c)。我们考虑特征级同步,而不是同步感知输出,因为它允许端到端学习框架具有更大的学习灵活性;iii)在(1c)中,我们同时估计了耦合协作特征和注意力。如果我们只估计特征,我们将需要基于估计的特征来计算协作关注。这将放大估计误差,导致级联失败;iv)采用基于注意的估计,利用(1c)中的协作注意促进对感知敏感区域的更精确的估计;见(1 d)。

SyncNet

由于延迟补偿模块是延迟感知协同感知系统的关键,即(1c)中的c()。它的功能是利用历史信息来实现延迟补偿。SyncNet包括两个部分:

  • feature-attention共生估计,采用双分支金字塔LSTM同时估计实时特征和协作注意力;
  • 时间调制,利用延迟时间自适应调整协作特征的最终估计。

特征-注意力共生估计
特征-注意力共生估计(FASE)利用一种新的双分支架构,包括特征估计分支和注意力估计分支,同时估计特征及其相应的协作注意力。双LSTM网络的两个分支共享相同的输入,包括自我代理i感知的实时特征和协作者j感知的k帧历史特征。每个分支由一个金字塔LSTM实现,该LSTM对一系列历史协作信息建模并估计当前状态。金字塔LSTM专门用于捕获空间相关的协作特征。如图4所示,当红框内的车辆组相对于中心车辆相对右移时,特征上的相似区域也会发生相同的移动。事实表明,空间信息对我们的估计任务是重要的。我们将LSTM[10]中的矩阵乘法修改为多尺度卷积结构;详见图5a。本文提出的金字塔LSTM与普通LSTM的主要区别在于:LSTM[10]没有专门考虑提取空间特征;convl - lstm[23]提取单尺度空间特征;而所提出的金字塔LSTM则是为了在多个尺度上捕捉局部到全局的特征。
在这里插入图片描述
在这里插入图片描述
整个过程如算法1所示,其中τ为延迟时间,k为历史帧,t0为当前时间,W(t)j和F(t)j分别为时间戳t时第j个agent到第ith个agent的协作注意力和特征,j (F)j和j W(t)j分别为时间戳t时协作注意力和特征的估计,e(t)是时间戳t时金字塔LSTM的输入,h(t)F,c(t)F,h(t)W和c(t)W分别是金字塔LSTM在每个分支中的隐藏状态和细胞状态。
在这里插入图片描述

所提出的特征-注意力共生估计具有三个特点:1)双分支结构同时推断协同特征和相应的协同注意力,保持独立性并消除级联故障;Ii)估计网络将协作关注作为输入,从而聚焦于更多信息领域,促进更有效的估计;Iii)在理想协同下,可学习的注意力估计网络获取特征的信息,并从注意力和融合特征中获得监督。在端到端优化过程中,它不仅可以无延迟地模拟计算出的权重分布,还可以主动学习减少对特征中噪声较大的空间位置的关注。

时间调制
虽然FASE实现了c(·)的基本功能,但我们发现,当延迟较低时,延迟引起的性能下降相对于FASE导致的估计噪声较小。为了解决这个问题,我们提出了时间调制,它将原始(在低延迟下工作良好)和估计(在高延迟下工作良好)的特征融合在一起,以延迟时间为条件,产生更全面和可靠的估计。
设M(t)F, M(t)W∈RH×W为反映每个空间区域估计不确定程度的置信度矩阵,TF∈RH×W ×C, TW∈RH×W为延时时间τ∈R展开得到的延时张量,其形状分别与ω F(t)和ω W(t)相同。时间调制的工作原理如下
在这里插入图片描述
在这里插入图片描述
其中mF(·)和mW(·)均为具有sigmoid激活函数的轻量级卷积神经网络,1∈RH×W为所有元素均为1的矩阵。步骤(2a)分别利用FASE估计的协同特征/注意力、最新的异步特征/注意力和延迟张量进行拼接,得到每个空间区域特征估计的置信度。根据置信度矩阵,步骤(2b)分别将估计的特征/注意力和最新的异步特征/注意力组合起来。我们期望当延迟高时,置信度矩阵的权重会更高,估计的特征/注意力对最终估计的贡献会更大;如图5b所示。

实验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/259213.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java_方法(重载方法签名等详解)

在之前我们学习C语言时,当我们想要重复使用某段代码的功能时,我们会将这段代码定义为一个函数,而在java中我们把这段重复使用的代码叫做方法。 方法的定义 类体的内容分为变量的声明和方法的定义,方法的定义包括两部分&#xff1…

基于协同过滤的时尚穿搭推荐系统

项目:基于协同过滤的时尚穿搭推荐系统 摘 要 基于协同过滤的时尚穿搭推荐系统是一种能自动从网络上收集信息的工具,可根据用户的需求定向采集特定数据信息的工具,本项目通过研究服饰流行的分析和预测的分析和预测信息可视化时尚穿搭推荐系统…

多线程---线程同步,线程通信

线程同步 1.概述 线程同步是多线程编程中的一个重要概念,它指的是在多线程环境中,通过一定的机制保证多个线程按照某种特定的方式正确、有序地执行。这主要是为了避免并发问题,如死锁、竞态条件、资源争用等,确保数据的一致性和完…

分布式文件系统 SpringBoot+FastDFS+Vue.js【一】

分布式文件系统 SpringBootFastDFSVue.js【一】 一、分布式文件系统1.1.文件系统1.2.什么是分布式文件系统1.3.分布式文件系统的出现1.3.主流的分布式文件系统1.4.分布式文件服务提供商1.4.1.阿里OSS1.4.2.七牛云存储1.4.3.百度云存储 二、fastDFS2.1.fastDSF介绍2.2.为什么要使…

【STM32】软件SPI读写W25Q64芯片

目录 W25Q64模块 W25Q64芯片简介 硬件电路 W25Q64框图 Flash操作注意事项 状态寄存器 ​编辑 指令集 INSTRUCTIONS​编辑 ​编辑 SPI读写W25Q64代码 硬件接线图 MySPI.c MySPI.h W25Q64 W25Q64.c W25Q64.h main.c 测试 SPI通信(W25Q64芯片简介&am…

【C++学习手札】多态:掌握面向对象编程的动态绑定与继承机制(深入)

🎬慕斯主页:修仙—别有洞天 ♈️今日夜电波:世界上的另一个我 1:02━━━━━━️💟──────── 3:58 🔄 ◀️ ⏸ ▶️ ☰ &am…

Python函数(一)

目录 一、定义函数 (一)向函数传递信息 (二)实参和形参 二、传递实参 (一)位置实参 (二)关键字实参 (三)默认值 (四)等效的函…

Code Composer Studio (CCS) - Comment (注释)

Code Composer Studio [CCS] - Comment [注释] References Add Block Comment: 选中几行代码 -> 鼠标右键 -> Source -> Add Block Comment shortcut key: Ctrl Shift / Remove Block Comment: 选中几行代码->鼠标右键->Source->Remove Block Comment s…

redis为什么使用跳跃表而不是树

Redis中支持五种数据类型中有序集合Sorted Set的底层数据结构使用的跳跃表,为何不使用其他的如平衡二叉树、b树等数据结构呢? 1,redis的设计目标、性能需求: redis是高性能的非关系型(NoSQL)内存键值数据…

12.QT文件对话框 文件的弹窗选择-QFileDialog

目录 前言: 技能: 内容: 1. 界面 2.信号槽 3.其他函数 参考: 前言: 通过按钮实现文件弹窗选择以及关联的操作 效果图就和平时用电脑弹出的选文件对话框一样 技能: QString filename QFileDialog::ge…

蓝桥杯官网填空题(寻找整数)

问题描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 有一个不超过 10^17 的正整数 n,知道这个数除以 2 至 49 后的余数如下表所示,求这个正整数最小是多少。 运行限制 最大运行时间:…

Pr教程1-8节笔记

第一课 认识PR以及PR的学习方法 学习任务: 1、熟练掌握PR软件,同时掌握剪辑技术以及常用于制作特效的效果器。 2、认识PR软件的名称、主要功能以及用途作用。 3、明白学习PR我们能做些什么以及PR的学习方法。 知识内容: 1、PR是专门用于视…

EasyUI动态加载组件

要实现如下的效果,在表格中显示进度条 主要是需要再次初始化组件,借用ChatGPT的意思是: 在许多 JavaScript UI 框架中,包括 EasyUI,在动态地创建或插入新的 DOM 元素后,通常需要手动初始化相关的组件或特性…

HarmonyOS—状态管理概述

在前文的描述中,我们构建的页面多为静态界面。如果希望构建一个动态的、有交互的界面,就需要引入“状态”的概念。 图1 效果图 上面的示例中,用户与应用程序的交互触发了文本状态变更,状态变更引起了UI渲染,UI从“He…

华为23年9月笔试原题,巨详细题解,附有LeetCode测试链接

文章目录 前言思路主要思路关于f函数的剖析Code就到这,铁子们下期见!!!! 前言 铁子们好啊!今天阿辉又给大家来更新新一道好题,下面链接是23年9月27的华为笔试原题,LeetCode上面的ha…

论文阅读-Pegasus:通过网络内一致性目录容忍分布式存储中的偏斜工作负载

论文名称:Pegasus: Tolerating Skewed Workloads in Distributed Storage with In-Network Coherence Directories 摘要 高性能分布式存储系统面临着由于偏斜和动态工作负载引起的负载不平衡的挑战。本文介绍了Pegasus,这是一个利用新一代可编程交换机…

cool Node后端 中实现中间件的书写

1.需求 在node后端中,想实现一个专门鉴权的文件配置,可以这样来解释 就是 有些接口需要token调用接口,有些接口不需要使用token 调用 这期来详细说明一下 什么是中间件中间件顾名思义是指在请求和响应中间,进行请求数据的拦截处理&#xf…

解锁Spring Boot中的设计模式—04.桥接模式:探索【桥接模式】的奥秘与应用实践!

桥接模式 桥接模式也称为桥梁模式、接口模式或者柄体(Handle and Body)模式,是将抽象部分与他的具体实现部分分离,使它们都可以独立地变化,通过组合的方式建立两个类之间的联系,而不是继承。 桥接模式是一种…

《区块链公链数据分析简易速速上手小册》第10章:未来趋势和挑战(2024 最新版)

文章目录 10.1 区块链技术的发展方向10.1.1 基础知识10.1.2 重点案例:构建一个简单的智能合约步骤1: 创建智能合约步骤2: 部署智能合约步骤3: 使用Python与智能合约交互结语10.1.3 拓展案例 1:探索 DeFi 应用准备工作实现步骤步骤1: 获取Compound市场数据步骤2: 分析借贷市场…

给定n个结点m条边的简单无向图,判断该图是否存在鱼形状的子图:有一个环,其中有一个结点有另外两条边,连向不在环内的两个结点。若有,输出子图的连边

题目 思路&#xff1a; #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back #define fi first #define se second #define lson p << 1 #define rson p << 1 | 1 const int maxn 1e6 5, inf 1e18 * 3, maxm 4e4 …