压缩感知(Compressed Sensing,CS)的基础知识

压缩感知(Compressed Sensing,CS)是一种用于信号处理的技术,旨在以少于奈奎斯特采样定理所要求的样本频率来重构信号。该技术利用信号的稀疏性,即信号可以用较少的非零系数表示。压缩感知在图像获取中的应用使得在采集过程中就以较少的样本来捕获图像,然后通过算法完整重构出原始图像。

压缩感知和传统的图像异同点

压缩感知和传统的图像获取相比,在获取图像和原始图像方面具有以下异同点:

相同点

  1. 重构目标:压缩感知的目标是尽可能地恢复原始图像,所以理论上重构出的图像与原始图像在内容上应该是一致的。

  2. 应用范围:压缩感知技术可以应用在任何需要图像获取的场景,尤其是在采样资源受限的情况下。

不同点

  1. 采样率:压缩感知可以在远低于奈奎斯特采样的条件下获取图像数据,而传统图像获取通常需要符合奈奎斯特采样定理来保证不丢失信息。

  2. 重构过程:压缩感知获得的图像需要经过非线性重构过程,利用优化算法或迭代算法来恢复完整图像。而传统的图像获取不涉及这一过程,采集的就是完整的图像数据。

  3. 图像质量:压缩感知重构的图像可能不会与原始图像完全一致,特别是在极低的采样率下,图像质量往往会受到影响。图像的稀疏性以及重构算法的性能对最终图像质量有很大影响。

  4. 硬件要求:压缩感知可能需要特别设计的硬件系统来执行不同于传统图像获取的采样过程。

  5. 计算复杂性:压缩感知重构图像的过程需要较大的计算资源,可能需要更强大的算力和专门的算法优化。

总的来说,尽管压缩感知的目的是尽可能重构出与原始图像一致的图像,但由于采样率的降低和重构过程的复杂性,重构出的图像可能在质量上与原始图像有差异。不过,随着算法和硬件技术的发展,这些差异正逐步减小。

应用场景

压缩感知在多个方面提供了传统直接采样方法所不具备的优势。以下是压缩感知的几个主要优势以及相应的应用场景:

  1. 数据存储和传输:压缩感知允许直接在采样过程中压缩数据,从而节省了存储空间和传输带宽。这对于存储容量有限或者传输带宽受限的应用非常有意义,例如在卫星通信、远程传感和机载摄像等场景。

  2. 采样速率:在奈奎斯特采样定理下,传统的采样方法要求信号采样频率至少是信号最高频率的两倍,以避免混叠现象。对于一些高频信号,这会要求非常高的采样速率,而对硬件的要求也相应增加。压缩感知能够有效降低采样速率,进而降低对硬件的要求。

  3. 成像时间:在医学成像(如磁共振成像,MRI)中,长时间的成像过程会带来患者不适,并增加运动伪影的风险。压缩感知技术减少了必需的成像时间,提高了患者的舒适度并降低了伪影。

  4. 成本效益:由于压缩感知可以降低对传感器采样率的需求,它有可能降低硬件成本,因为创造高速采样设备通常成本较高。

  5. 能源效率:在远程监测和物联网(IoT)设备中,长期运行的传感器可能对能量效率有严格的要求。由于压缩感知采样节省了能量,它适合在这些受能量限制的设备中使用。

传统图像的优势

然而,传统的直接采样方法也有其存在的理由:

  1. 简单性:直接采样和重构比起复杂的压缩感知算法在实现上更为简单直接。

  2. 成熟性:直接采样技术经过多年发展已经非常成熟,具有可靠性和广泛的支持基础。

  3. 实时性:在一些实时处理非常关键的应用中,复杂的压缩感知重构过程可能会造成不可接受的延迟。

压缩感知技术的发展正不断解决这些挑战,使其在越来越多的领域得到应用。尤其是在资源受限或者对采样/存储效率有极高要求的场景中,压缩感知显示出了巨大的潜力。

相关博文

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

OpenCV识别人脸案例实战

入门OpenCV:图像阈值处理

我的图书

1、OpenCV轻松入门
李立宗,OpenCV轻松入门,电子工业出版社,2023
在这里插入图片描述

2、计算机视觉40例
李立宗,计算机视觉40例,电子工业出版社,2022
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/260346.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kubernetes概述

目录 1.K8S 是什么 2.为什么要用 K8S Kubernetes 主要功能如下: 3.Kubernetes 集群架构与组件 Master 组件 Kube-apiserver Kube-controller-manager Kube-scheduler 配置存储中心 etcd Node 组件 Kubelet Kube-Proxy docker 或 rocket 4.Kubernete…

css2背景

css2背景 一.背景颜色二.背景图片三.背景平铺四.背景图片位置五.背景图像固定六.复合型写法七.背景颜色半透明八.总结 一.背景颜色 默认是transparent(透明) 二.背景图片 默认是none 三.背景平铺 默认是background-repeat(平铺) 四.背景图片位置…

Vue中$root的使用方法

查看本专栏目录 关于作者 还是大剑师兰特:曾是美国某知名大学计算机专业研究生,现为航空航海领域高级前端工程师;CSDN知名博主,GIS领域优质创作者,深耕openlayers、leaflet、mapbox、cesium,canvas&#x…

力扣题目训练(17)

2024年2月10日力扣题目训练 2024年2月10日力扣题目训练551. 学生出勤记录 I557. 反转字符串中的单词 III559. N 叉树的最大深度241. 为运算表达式设计优先级260. 只出现一次的数字 III126. 单词接龙 II 2024年2月10日力扣题目训练 2024年2月10日第十七天编程训练,今…

ai数字仿真辩论主持人提升用户体验

Ai虚拟主持人是元宇宙和AI人工智能技术在播音主持行业的重要应用,AI虚拟主持人能极大提升新闻资讯内容的精准度,改变单一的播报形式。 首先,AI虚拟主持人极大地提升了节目的制作效率和灵活性。传统主持人需要花费大量时间进行彩排和录制&…

照片去除多余人物的方法分享之三分钟教你怎么去除

在拍摄照片时,有时候会遇到照片中有多余的人物,这会影响照片的美观度和主题表达。去除照片中多余的人物,需要采用一些技巧和方法。本文将介绍几种常用的去除照片中多余人物的方法。 一、使用水印云软件去除多余人物 水印云是一款功能强大的图…

ChatGPT的大致原理

国外有个博主写了一篇博文,名字叫TChatGPT: Explained to KidsQ」, 直译过来就是,给小孩子解释什么是ChatGPT。 因为现实是很多的小孩子已经可以用父母的手机版ChatGPT玩了 ,ChatGPT几乎可以算得上无所不知,起码给小孩…

linux ext3/ext4文件系统(part2 jbd2)

概述 jbd2(journal block device 2)是为块存储设计的 wal 机制,它为要写设备的buffer绑定了一个journal_head,这个journal_head与一个transaction绑定,随着事务状态的转移(运行,生成日志&#…

linux监控系统资源命令

当前CPU内核版本 [rootVM-12-12-centos ~]# cat /proc/version Linux version 3.10.0-1160.11.1.el7.x86_64 (mockbuildkbuilder.bsys.centos.org) (gcc version 4.8.5 20150623 (Red Hat 4.8.5-44) (GCC) ) #1 SMP Fri Dec 18 16:34:56 UTC 2020 当前系统版本 [rootVM-12-1…

RK3588平台开发系列讲解(视频篇)ffmpeg 的移植

文章目录 一、ffmpeg 介绍二、ffmpeg 的组成三、ffmpeg 依赖库沉淀、分享、成长,让自己和他人都能有所收获!😄 📢ffmpeg 是一种多媒体音视频处理工具,具备视频采集功能、视频抓取图像、视频格式转换、给视频加水印并能将视频转化为流等诸多强大的功能。它采用 LGPL 或 G…

2.18号c++

1.菱形继承 1.1 概念 菱形继承又称为钻石继承,是由公共基类派生出多个中间子类,又由多个中间子类共同派生出汇聚子类。汇聚子类会得到多份中间子类从公共基类继承下来的数据成员,会造成空间浪费,没有必要。 问题: …

2.1.1 摄像头

摄像头 更多内容,请关注: github:https://github.com/gotonote/Autopilot-Notes.git 摄像头是目前自动驾驶车中应用和研究最广泛的传感器,其采集图像的过程最接近人类视觉系统。基于图像的物体检测和识别技术已经相当成熟&#…

外包干了3个多月,技术退步明显。。。。

先说一下自己的情况,本科生,19年通过校招进入广州某软件公司,干了接近3年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…

Spring Boot与LiteFlow:轻量级流程引擎的集成与应用含完整过程

点击下载《Spring Boot与LiteFlow:轻量级流程引擎的集成与应用含完整过程》 1. 前言 本文旨在介绍Spring Boot与LiteFlow的集成方法,详细阐述LiteFlow的原理、使用流程、步骤以及代码注释。通过本文,读者将能够了解LiteFlow的特点&#xff…

python coding with ChatGPT 打卡第20天| 二叉搜索树:搜索、验证、最小绝对差、众数

相关推荐 python coding with ChatGPT 打卡第12天| 二叉树:理论基础 python coding with ChatGPT 打卡第13天| 二叉树的深度优先遍历 python coding with ChatGPT 打卡第14天| 二叉树的广度优先遍历 python coding with ChatGPT 打卡第15天| 二叉树:翻转…

数据安全之认识数据资产管理平台

文章目录 一、什么是数据资产二、什么是数据资产管理平台1、什么是数据资产管理平台2、为什么需要数据资产管理平台 三、数据资产管理平台的主要功能四、数据资产管理平台的工作原理五、数据资产管理平台的应用场景六、安全资产管理平台与数据资产管理平台的区别与关系1、安全资…

Bert基础(一)--自注意力机制

1、简介 当下最先进的深度学习架构之一,Transformer被广泛应用于自然语言处理领域。它不单替代了以前流行的循环神经网络(recurrent neural network, RNN)和长短期记忆(long short-term memory, LSTM)网络,并且以它为基础衍生出了诸如BERT、GPT-3、T5等…

从入门到精通:AI绘画与修图实战指南

💂 个人网站:【 海拥】【神级代码资源网站】【办公神器】🤟 基于Web端打造的:👉轻量化工具创作平台💅 想寻找共同学习交流的小伙伴,请点击【全栈技术交流群】 在这篇文章中,我们将深入探讨如何利…

一篇博客教会你让Spring扫描自定义注解

文章目录 自定义注解使用注解Spring 管理其他 Spring 支持扫描开发人员自定义的注解,从而使开发人员更加灵活方便地使用注解。 自定义注解 我们可以在我们自定义的注解上添加 Spring 的 Component 注解,这样 Spring 框架就会将我们自定义的注解标识的类…

Avalonia 初学笔记(1):环境配置

文章目录 相关链接前言Avalonia 官方文档Avalonia 环境配置我的本地环境下载Visual Studio Avalonia 插件 Avalonia 新建项目平台选择新建项目平台选择设计器选择扩展选择最终选择 默认项目运行 Avalonia 官方Demo总结 相关链接 Avalonia学习笔记 CSDN博客专栏 前言 最近想了解…