Android 基础技术——Framework

笔者希望做一个系列,整理 Android 基础技术,本章是关于 Framework

简述 Android 系统启动流程

当按电源键触发开机,首先会从 ROM 中预定义的地方加载引导程序 BootLoader 到 RAM 中,并执行 BootLoader 程序启动 Linux Kernel, 然后启动用户级别的第一个进程: init 进程(汇编调用)。init 进程会解析 init.rc 脚本做一些初始化工作,包括挂载文件系统、创建工作目录以及启动系统服务进程等,其中系统服务进程包括 Zygote、service manager、media 等(C++层的)。在 Zygote 中会进一步去启动 system_server进程(JAVA 层),然后在 system_server 进程中会启动 AMS、WMS、PMS 等服务,等这些服务启动之后,AMS 中就会打开 Launcher 应用的 home Activity,最终就看到了手机的 "桌面"。

Android 系统中有多少种不同的进程
  • init进程  :用户态的第一个进程解析init.rc创建各自服务进程(media, 守护进程),其中有一个叫zygote进程
  • zygote进程 : 一个进程所需要的必要资源 preloadclass, 虚拟机vm
  • system_server进程: 从zygote进程fork ,创建大量的服务(AMS,PMS,WMS等),加载Android framework所需要的资源context。
  • app进程:从zygote进程fork

init 进程是什么,作用是什么

init进程是Linux系统中用户空间的第一个进程,进程号固定为1, 是C++进程. 由kernel启动

Kernel启动后,在用户空间启动init进程,并调用init中的main()方法执行init进程的职责。

1. 创建mkdir和挂载mount启动所需要的文件目录 

  1. 初始化和启动属性服务 
  2. 解析init.rc配置文件并启动Zygote进程,是由init进程fork出来的

zygote进程是什么,作用是什么

Zgyote 是Android中的第一个art虚拟机 Android Runtime,他通过socket的方式与其他进程进行通信。

作用1 zygote fork的第一个java进程 SystemServer 进程

SystemServer 会开启一系列服务:AMS, WMS, PMS, PKMS等等

作用2从zygote fork子进程app Launcher进程

Launcher->app>fork  

app_main.cpp做了什么,或者另外一种说法:Zygote是如何被启动的?

创建zygote进程,走到app_main.cpp的main方法,它是zygote进程的入口

app_main.cpp的main方法流程如下:

  • 首先是Native层 startVm 启动了虚拟机!!! 这里就是启动JAVA虚拟机
  • 然后 调用startReg函数为java虚拟机注册JNI方法
  • 通过jni调用走到ZygoteInit.main,ZygoteInit.main() 是java层方法
    • registerZygoteSocket() 注册一个Socket Server接收AMS请求,socketName以ANDROID_SOCKET_开头;
    • preload(),预加载资源,例如常用类、颜色、drawable、JNI函数;以预加载类为例,读取/system/etc/preloaded-classes文件中配置的类名,通过Class.forName反射加载,常用类Activity、intent、String、Integer、TextView、Button
    • startSystemServer() ,内部通过Zygote.forkSystemServer启动SystemServer
    • runSelectLoop() 循环等待处理请求
system_server 为什么要在 Zygote 中启动,而不是由 init 直接启动呢

Zygote 作为一个孵化器,可以提前加载一些资源,这样 fork() 时基于 Copy-On-Write 机制创建的其他进程就能直接使用这些资源,而不用重新加载。比如 system_server 就可以直接使用 Zygote 中的 JNI 函数、共享库、常用的类、以及主题资源

使用 Zygote 进程去孵化应用进程有什么好处为什么不是让 system_server 去孵化? 

好处:应用在启动的时候需要做很多准备工作,包括启动虚拟机,加载各类系统资源等等,这些都是非常耗时的,如果能在zygote里就给这些必要的初始化工作做好,子进程在fork的时候就能直接共享,那么这样的话效率就会非常高。

为什么不是 system_server 进行 fork:

  • 首先 system_server 相比 Zygote 多运行了 AMS、WMS、PMS 等服务,这些对一个应用程序来说是不需要的。
  • 另外进程的 fork() 对多线程不友好,仅会将发起调用的线程拷贝到子进程,这可能会导致死锁,而 system_server 中肯定是有很多线程的。 

Zygote 为什么不采用 Binder 机制进行 IPC 通信? 
  • 第一个原因,我们可以设想一下采用binder调用的话该怎么做,首先zygote要启用binder机制,需要打开binder驱动,获得一个描述符,再通过mmap进行内存映射,还要注册binder线程,这还不够,还要创建一个binder对象注册到serviceManager,另外AMS要向zygote发起创建应用进程请求的话,要先从serviceManager查询zygote的binder对象,然后再发起binder调用,这来来回回好几趟非常繁琐,相比之下,zygote和SystemServer进程本来就是父子关系,对于简单的消息通信,用管道或者socket非常方便省事。
  • 第二个原因,如果zygote启用binder机制,再fork出SystemServer,那么SystemServer就会继承了zygote的描述符以及映射的内存,这两个进程在binder驱动层就会共用一套数据结构,这显然是不行的,所以还得先给原来的旧的描述符关掉,再重新启用一遍binder机制,这个就是自找麻烦了。
  • 第三个原因:Binder 机制中存在 Binder 线程池,是多线程的,如果 Zygote 采用 Binder 的话就存在上面说的 fork() 与 多线程的问题了。其实严格来说,Binder 机制不一定要多线程,所谓的 Binder 线程只不过是在循环读取 Binder 驱动的消息而已,只注册一个 Binder 线程也是可以工作的,比如 service manager 就是这样的。实际上 Zygote 尽管没有采取 Binder 机制,它也不是单线程的,但它在 fork() 前主动停止 了其他线程,fork() 后重新启动了
多线程进程的fork调用会有什么问题?

会发生死锁

在POSIX 标准中,fork 的行为是这样的:复制整个用户空间的数据(通常使用 copy-on-write 的策略, 所以可以实现的速度很快)以及所有系统对象,然后仅复制当前线程到子进程。这里:所有父进程中别的线程,到了子进程中都是突然蒸发掉的

假设这么一个环境,在 fork 之前,有一个子线程 lock 了某个锁,获得了对锁的所有权。fork 以 后,在子进程中,所有的额外线程都人间蒸发了。而锁却被正常复制了,在子进程看来,这个锁没有主人,所以没有任何人可以对它解锁。当子进程想 lock 这个锁时,不再有任何手段可以解开 了。程序发生死锁。

SystemServiceManager和service_manager的区别
  • SystemServiceManager 专门管理各种服务的启动  java层的各种服务:AMS, PMS, WMS。SystemServiceManager 的ArrayList<SystemService> mServices 添加上面的服务
  • service_manager 是C++层的 它是0号 binder服务

如果我们启动一个hello World安卓用于程序,里面不另外启动其他线程,这个里面最少要启动多少个线程

启动4个 线程 

  • main线程,只是程序的主线程,也是日常用到的最多的线程,也叫UI线程,因为android的组件是非线程安全的,所以只允许UI/MAIN线程来操作。 
  • GC线程,java有垃圾回收机制,每个java程序都有一个专门负责垃圾回收的线程
  • Binder1 就是我们的ApplicationThread,这个类实现了Ibinder接口,用于进程之间通信,具体来说,就是我们程序和AMS通信的工具 
  • Binder2 就是我们的ViewRoot.W对象,它也是实现了IBinder接口,就是用于我们的应用程序和 wms通信的工具。 wms就是WindowManagerServicer ,和ams差不多的概念,不过它是管理窗口的系统服务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/260926.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

已解决Application run failed org.springframework.beans.factory.BeanNot

问题原因&#xff1a;SpringBoot的版本与mybiats-puls版本不对应且&#xff0c;spring自带的mybiats与mybiats-puls版本不对应 这里我用的是3.2.2版本的SpringBoot&#xff0c;之前mybiats-puls版本是3.5.3.1有所不同。 问题&#xff1a;版本对不上 解决办法&#xff1a;完整…

NoSQL 数据库管理工具,搭载强大支持:Redis、Memcached、SSDB、LevelDB、RocksDB,为您的数据存储提供无与伦比的灵活性与性能!

NoSQL 数据库管理工具&#xff0c;搭载强大支持&#xff1a;Redis、Memcached、SSDB、LevelDB、RocksDB&#xff0c;为您的数据存储提供无与伦比的灵活性与性能&#xff01; 【官网地址】&#xff1a;http://www.redisant.cn/nosql 介绍 直观的用户界面 从单一应用程序中同…

计算机视觉基础:【矩阵】矩阵选取子集

OpenCV的基础是处理图像&#xff0c;而图像的基础是矩阵。 因此&#xff0c;如何使用好矩阵是非常关键的。 下面我们通过一个具体的实例来展示如何通过Python和OpenCV对矩阵进行操作&#xff0c;从而更好地实现对图像的处理。 示例 示例&#xff1a;选取矩阵中指定的行和列的…

我为什么不喜欢关电脑?

程序员为什么不喜欢关电脑&#xff1f; 你是否注意到&#xff0c;程序员们似乎从不关电脑&#xff1f;别以为他们是电脑上瘾&#xff0c;实则是有他们自己的原因&#xff01;让我们一起揭秘背后的原因&#xff0c;看看程序员们真正的“英雄”本色&#xff01; 一、上大学时。 …

C++:C++入门基础

创作不易&#xff0c;感谢三连 &#xff01;&#xff01; 一、什么是C C语言是结构化和模块化的语言&#xff0c;适合处理较小规模的程序。对于复杂的问题&#xff0c;规模较大的程序&#xff0c;需要高度的抽象和建模时&#xff0c;C语言则不合适。为了解决软件危机&#xff…

0220作业

C语言实现LED1闪烁 led.h #ifndef __LED_H__ #define __LED_H__//RCC寄存器封装 #define RCC_MP_AHB4_ENSETR (*(volatile unsigned int*)0x50000A28) //寄存器封装//GPIO寄存器封装 typedef struct{volatile unsigned int MODER; //00volatile unsigned int OTYPER; //04vol…

代码随想录算法训练营DAY21 | 二叉树 (9)

一、LeetCode 669 修建二叉搜索树 题目链接&#xff1a;669.修建二叉搜索树https://leetcode.cn/problems/trim-a-binary-search-tree/description/ 思路&#xff1a;递归三部曲-定参数、返回值-定终止条件-定单层递归逻辑 class Solution {public TreeNode trimBST(TreeNode …

Devvortex

目标靶机 攻击机IP地址为10.10.16.2 信息收集 # nmap -sT --min-rate 10000 -p- 10.10.11.242 -oN port.nmap Starting Nmap 7.94 ( https://nmap.org ) at 2024-02-21 10:32 CST Warning: 10.10.11.242 giving up on port because retransmission cap hit (10). Nma…

MyBatis Plus:自定义typeHandler类型处理器

目录 引言&#xff1a;关于TypeHandler PostGreSQL&#xff1a;JSON数据类型 PostGreSQL数据库驱动&#xff1a;PGobject类 TypeHandler类型处理器 自定义类型处理器 类型处理器实现&#xff1a;PGJsonTypeHandler 注册类型处理器 引言&#xff1a;关于TypeHandler MyBa…

centos通过VNC连接

1.Centos上安装VNC服务端 yum list|grep vnc yum -y install tightvnc-server 2.windows电脑安装VNC客户端 下载并安装VNC-Viewer-7.9.0-Windows https://download.csdn.net/download/sj349781478/88856711 3.Centos启动VNC服务 #vncserver 4.通过客户端连接VNC服务端

kafka命令行操作

kafka命令行操作&#xff1a; 配置环境变量&#xff1a; export JAVA_HOME/usr/lib/jvm/java-1.8.0-openjdk export JRE_HOME${JAVA_HOME}/jre export CLASSPATH.:${JAVA_HOME}/lib:${JRE_HOME}/lib:$CLASSPATH export JAVA_PATH${JAVA_HOME}/bin:${JRE_HOME}/bin export PATH…

AI顶流OpenAI又一重磅力作Sora,究竟是什么?一文弄懂Sora:简介|发展历程|主要功能|使用场景|替代软件|AI软件工具推荐!

要说最近一周的头条热搜&#xff0c;非Sora莫属&#xff01;Sora的诞生&#xff0c;再一次引发了人们对AI人工智能以及AIGC的关注。 对第一次听说Sora的人&#xff0c;可能会好奇&#xff0c;大家都在说的Sora是什么&#xff1f; Sora是什么软件&#xff1f; Sora&#xff0…

XML Map 端口进阶篇——常用关键字和格式化器详解

XML Map 端口是用于在不同XML之间建立关系映射的工具&#xff0c;允许通过拖拽操作实现源XML和目标 XML之间的数据字段映射&#xff0c;除此之外&#xff0c;XML Map 端口还提供了其它丰富多彩的功能&#xff0c;使用户能够更加灵活和高效的处理XML 数据映射任务&#xff0c;让…

解锁创意灵感,探索FlutterExampleApps项目的奥秘

解锁创意灵感&#xff0c;探索FlutterExampleApps项目的奥秘 项目简介 FlutterExampleApps项目是一个包含各种示例应用链接的仓库&#xff0c;旨在演示Flutter应用开发中的各种功能、特性和集成。 项目包含了以下几个部分&#xff0c;每个部分都涵盖了不同的内容和主题&…

使用 Next.js 连接 mysql 数据库

前言 本文主要为大家介绍&#xff0c;如何使用 Next 框架实现一个简单的后端接口&#xff0c;并且从数据库中请求数据返回给前端。 实现 创建api/getData文件夹 项目创建完成后在 app 文件下新建api文件夹&#xff0c;在 api 文件夹下新建 getData 文件夹&#xff0c;在 ge…

L1-047 装睡-java

输入格式&#xff1a; 输入在第一行给出一个正整数N&#xff08;≤10&#xff09;。随后N行&#xff0c;每行给出一个人的名字&#xff08;仅由英文字母组成的、长度不超过3个字符的串&#xff09;、其呼吸频率和脉搏&#xff08;均为不超过100的正整数&#xff09;。 输出格…

实现Slider 滑块组件标记动态变化

实现以上效果&#xff0c;下拉框、slider滑块、按钮都在同一行&#xff0c;设置flex布局后&#xff0c;发现silider滑块最右边的标记数字一直都如下竖着显示&#xff0c;后来通过给源组件的标记区.el-slider__marks-text增加一个宽度后解决该问题。 <template><div>…

如何使用IP代理解决亚马逊账号IP关联问题?

亚马逊账号IP关联问题是指当同一个IP地址下有多个亚马逊账号进行活动时&#xff0c;亚马逊会将它们关联在一起&#xff0c;从而可能导致账号被封禁或限制。 为了避免这种情况&#xff0c;许多人选择使用IP代理。 IP代理为什么可以解决亚马逊IP关联问题&#xff1f; IP代理是…

2.20 day2 QT

自由发挥登录窗口的应用场景&#xff0c;实现一个登录窗口界面 #include "widget.h"Widget::Widget(QWidget *parent): QWidget(parent) {//窗口相关设置this->setWindowTitle("登入页面"); //设置 窗口 标题this->setWindowIcon(QIcon("D:…

算法项目(2)—— LSTM、RNN、GRU(SE注意力)、卡尔曼轨迹预测

本文包含什么? 项目运行的方式(包教会)项目代码LSTM、RNN、GRU(SE注意力)、卡尔曼四种算法进行轨迹预测.各种效果图运行有问题? csdn上后台随时售后.项目说明 本文实现了三种深度学习算法加传统算法卡尔曼滤波进行轨迹预测, 预测效果图 首先看下不同模型的指标: 模型RM…