YOLOv5代码解读[02] models/yolov5l.yaml文件解析

文章目录

  • YOLOv5代码解读[02] models/yolov5l.yaml文件解析
    • yolov5l.yaml文件
    • 检测头1--->耦合头
    • 检测头2--->解耦头
    • 检测头3--->ASFF检测头
    • Model类解析
    • parse_model函数

YOLOv5代码解读[02] models/yolov5l.yaml文件解析

yolov5l.yaml文件

在这里插入图片描述

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 27  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors, False]],  # Detect(P3, P4, P5)]

检测头1—>耦合头

class Detect(nn.Module):stride = None  onnx_dynamic = Falseexport = Falsedef __init__(self, nc=80, anchors=(), Decoupled=False, ch=(), inplace=True):  super().__init__()# 是否解耦头self.decoupled = Decoupled# 类别数目self.nc = nc  # 每个anchor输出维度 self.no = nc + 5  # 检测层的输出数量(不同尺度个数) self.nl = len(anchors)  # 每个尺度特征图的anchor数量self.na = len(anchors[0]) // 2  # 初始化步长init gridself.grid = [torch.zeros(1)] * self.nl    # 初始化anchor gridself.anchor_grid = [torch.zeros(1)] * self.nl  # self.register_buffer("a", torch.ones(2,3))  # register_buffer的作用是将torch.ones(2,3)这个tensor注册到模型的buffers()属性中,并命名为a,# 这代表a对应的是一个持久态,不会有梯度传播给它,但是能被模型的state_dict记录下来,可以理解为模型的常数。self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # (3,3,2) == (nl,na,2)# 检测头head输出卷积# 如果是解耦头if self.decoupled:self.m = nn.ModuleList(DecoupledHead(x, self.nc, anchors) for x in ch) # 如果是耦合头else:self.m = nn.ModuleList(nn.Conv2d(x, self.no*self.na, 1) for x in ch) # use in-place ops (e.g. slice assignment)self.inplace = inplace  def forward(self, x):# inference outputz = []# 对于每个尺度的特征图来说for i in range(self.nl):# conv# P3: [1, 128, 80, 80]->[1, 3*(nc+5), 80, 80]# P4: [1, 256, 40, 40]->[1, 3*(nc+5), 40, 40]# P5: [1, 512, 20, 20]->[1, 3*(nc+5), 20, 20]x[i] = self.m[i](x[i])# 以coco数据集为例,x(bs,255,20,20) -> x(bs,3,20,20,85)   (x,y,w,h,c,c1,c2,.........)bs, _, ny, nx = x[i].shapex[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()# 推断过程inferenceif not self.training:# self.grid: [tensor([0.]), tensor([0.]), tensor([0.])]if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:# 中心点xy 网格gridy[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]# 长宽wh  锚anchor_gridy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]else:xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]y = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)# # 转成caffe时候的代码# def forward(self, x):#     # inference output#     z = []#     # 对于每个尺度的特征图来说#     for i in range(self.nl):#         # conv#         # P3: [1, 128, 80, 80]->[1, 3*(nc+5), 80, 80]#         # P4: [1, 256, 40, 40]->[1, 3*(nc+5), 40, 40]#         # P5: [1, 512, 20, 20]->[1, 3*(nc+5), 20, 20]#         x[i] = self.m[i](x[i])#         # y = x[i]#         y = x[i].sigmoid()#         z.append(y)#     return zdef _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):d = self.anchors[i].devicet = self.anchors[i].dtypey, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)# torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityif torch_1_10:yv, xv = torch.meshgrid(y, x, indexing='ij')else:yv, xv = torch.meshgrid(y, x)# 网格grid (x, y)# x[i] --> (bs,3,ny,nx,85)# grid --> (1,3,ny,nx,2)grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2))# 锚anchor (w, h)# x[i] --> (bs,3,ny,nx,85)# anchor_grid --> (1,3,ny,nx,2)# self.stride: tensor([ 8., 16., 32.])anchor_grid = (self.anchors[i].clone() * self.stride[i]).view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2))return grid, anchor_grid

检测头2—>解耦头

class DecoupledHead(nn.Module):def __init__(self, ch=256, nc=80, anchors=()):super().__init__()# 类别个数self.nc = nc# 检测层的数量self.nl = len(anchors)# 每一层anchor个数self.na = len(anchors[0]) // 2self.merge = Conv(ch, 128 , 1, 1)  # 默认256self.cls_convs1 = Conv(128, 64, 3, 1, 1)self.cls_convs2 = Conv(64, 64, 3, 1, 1)self.reg_convs1 = Conv(128, 64, 3, 1, 1)self.reg_convs2 = Conv(64, 64, 3, 1, 1)self.cls_preds = nn.Conv2d(64 , self.nc*self.na, 1)self.reg_preds = nn.Conv2d(64 , 4*self.na, 1)self.obj_preds = nn.Conv2d(64 , 1*self.na, 1)def forward(self, x):x = self.merge(x)x1 = self.cls_convs1(x)x1 = self.cls_convs2(x1)x1 = self.cls_preds(x1)x2 = self.reg_convs1(x)x2 = self.reg_convs2(x2)x21 = self.reg_preds(x2)x22 = self.obj_preds(x2)out = torch.cat([x21, x22, x1], 1)return out

检测头3—>ASFF检测头

class ASFF_Detect(nn.Module):  stride = None  onnx_dynamic = False   def __init__(self, nc=80, anchors=(), ch=(), multiplier=0.5, rfb=False, inplace=True):  super().__init__()# 类别数目self.nc = nc  # 每个anchor输出维度self.no = nc + 5  # 检测层的输出数量(不同尺度个数) self.nl = len(anchors) # 每个尺度特征图的anchor数量self.na = len(anchors[0]) // 2  # 初始化步长init gridself.grid = [torch.zeros(1)] * self.nl  # init anchor gridself.anchor_grid = [torch.zeros(1)] * self.nl# self.register_buffer("a", torch.ones(2,3))  # register_buffer的作用是将torch.ones(2,3)这个tensor注册到模型的buffers()属性中,并命名为a,# 这代表a对应的是一个持久态,不会有梯度传播给它,但是能被模型的state_dict记录下来,可以理解为模型的常数。self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # (3,3,2) == (nl,na,2)# ASFF模块self.l0_fusion = ASFFV5(level=0, multiplier=multiplier, rfb=rfb)self.l1_fusion = ASFFV5(level=1, multiplier=multiplier, rfb=rfb)self.l2_fusion = ASFFV5(level=2, multiplier=multiplier, rfb=rfb)# 检测头head输出卷积self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # use in-place ops (e.g. slice assignment)self.inplace = inplace  def forward(self, x):# inference outputz = []  result = []result.append(self.l2_fusion(x))result.append(self.l1_fusion(x))result.append(self.l0_fusion(x))x = result    # 对于每个尺度的特征图来说for i in range(self.nl):# conv # P3: [1, 128, 80, 80]->[1, 3*(nc+5), 80, 80]# P4: [1, 256, 40, 40]->[1, 3*(nc+5), 40, 40]# P5: [1, 512, 20, 20]->[1, 3*(nc+5), 20, 20]x[i] = self.m[i](x[i])  # 以coco数据集为例,x(bs,255,20,20) -> x(bs,3,20,20,85)   (x,y,w,h,c,c1,c2,.........)bs, _, ny, nx = x[i].shape  x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()# 推断过程inference if not self.training:  # self.grid: [tensor([0.]), tensor([0.]), tensor([0.])]if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()# 这块xy的计算存在大量疑惑?????????????????????????if self.inplace:# 中心点xy 网格gridy[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # 长宽wh  锚anchor_gridy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  y = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])# 网格grid (x, y)# x[i] --> (bs,3,ny,nx,85)# grid --> (1,3,ny,nx,2)grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()# 锚anchor (w, h)# x[i] --> (bs,3,ny,nx,85)# anchor_grid --> (1,3,ny,nx,2)# self.stride: tensor([ 8., 16., 32.])anchor_grid = (self.anchors[i].clone() * self.stride[i]).view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid

Model类解析

class Model(nn.Module):def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  super().__init__()# 字典dict类型if isinstance(cfg, dict):self.yaml = cfg  # yaml文件else: self.yaml_file = Path(cfg).name# 用ascii编码,忽略错误的形式打开文件cfgwith open(cfg, encoding='ascii', errors='ignore') as f:self.yaml = yaml.safe_load(f)  # 输入通道ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # 重写yaml文件中的ncif nc and nc != self.yaml['nc']:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml['nc'] = nc  # 重写yaml文件中的anchors if anchors:LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')self.yaml['anchors'] = round(anchors)  # 根据yaml文件的model_dict解析模型self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # 默认类别名字 从0到nc-1self.names = [str(i) for i in range(self.yaml['nc'])] self.inplace = self.yaml.get('inplace', True)# 设置Detect()中的inplace, stride, anchorsm = self.model[-1]  if isinstance(m, Detect) or isinstance(m, ASFF_Detect):s = 256m.inplace = self.inplace# 根据前向传播forward 计算步长stridem.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])# 把anchors放缩到了3个不同的尺度# 这块的形状为什么这样变化??????m.anchors /= m.stride.view(-1, 1, 1)# 根据YOLOv5 Detect()模块m的步幅顺序检查给定锚框顺序,必要时进行纠正。check_anchor_order(m)self.stride = m.strideif m.decoupled:LOGGER.info('decoupled done')pass else:self._initialize_biases()  # only run once  # 初始化权重weights和偏置biasesinitialize_weights(self)self.info()LOGGER.info('')def forward(self, x, augment=False, profile=False, visualize=False):# 推断时增强augmented inferenceif augment:return self._forward_augment(x)  # 单尺度推断single-scale inference 或者训练trainreturn self._forward_once(x, profile, visualize)  def _forward_augment(self, x):# height, widthimg_size = x.shape[-2:]  s = [1, 0.83, 0.67]  # scalesf = [None, 3, None]  # flips (2-ud, 3-lr)y = []  # outputsfor si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self._forward_once(xi)[0]  # forward# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # saveyi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y)  # clip augmented tailsreturn torch.cat(y, 1), None  # augmented inference, traindef _forward_once(self, x, profile=False, visualize=False):y, dt = [], []  for m in self.model:# 输入不是来自于上一个层的输出if m.f != -1:  x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]if profile:self._profile_one_layer(m, x, dt)# 计算输出x = m(x)y.append(x if m.i in self.save else None) # 特征可视化if visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return xdef _descale_pred(self, p, flips, scale, img_size):# de-scale predictions following augmented inference (inverse operation)if self.inplace:p[..., :4] /= scale  # de-scaleif flips == 2:p[..., 1] = img_size[0] - p[..., 1]  # de-flip udelif flips == 3:p[..., 0] = img_size[1] - p[..., 0]  # de-flip lrelse:x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scaleif flips == 2:y = img_size[0] - y  # de-flip udelif flips == 3:x = img_size[1] - x  # de-flip lrp = torch.cat((x, y, wh, p[..., 4:]), -1)return pdef _clip_augmented(self, y):# Clip YOLOv5 augmented inference tailsnl = self.model[-1].nl  # number of detection layers (P3-P5)g = sum(4 ** x for x in range(nl))  # grid pointse = 1  # exclude layer counti = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indicesy[0] = y[0][:, :-i]  # largei = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indicesy[-1] = y[-1][:, i:]  # smallreturn ydef _profile_one_layer(self, m, x, dt):c = isinstance(m, Detect) or isinstance(m, ASFF_Detect) # is final layer, copy input as inplace fixo = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPst = time_sync()for _ in range(10):m(x.copy() if c else x)dt.append((time_sync() - t) * 100)if m == self.model[0]:LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')if c:LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency# https://arxiv.org/abs/1708.02002 section 3.3# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.m = self.model[-1]  # mi--> Conv2d(128, 255, kernel_size=(1, 1), stride=(1, 1)) # s --> tensor(8.)for mi, s in zip(m.m, m.stride):  # conv.bias(255) to (3,85)b = mi.bias.view(m.na, -1)  b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # clsmi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)def _print_biases(self):m = self.model[-1]  for mi in m.m:  b = mi.bias.detach().view(m.na, -1).T  LOGGER.info(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))def _print_weights(self):for m in self.model.modules():if type(m) is Bottleneck:LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weightsdef fuse(self):  # fuse model Conv2d() + BatchNorm2d() layersLOGGER.info('Fusing layers... ')for m in self.model.modules():if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update convdelattr(m, 'bn')  # remove batchnormm.forward = m.forward_fuse  # update forwardself.info()return selfdef info(self, verbose=False, img_size=640):  # 打印模型信息model_info(self, verbose, img_size)def _apply(self, fn):# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffersself = super()._apply(fn)m = self.model[-1]  # Detect()if isinstance(m, Detect) or isinstance(m, ASFF_Detect) or isinstance(m, Decoupled_Detect):m.stride = fn(m.stride)m.grid = list(map(fn, m.grid))if isinstance(m.anchor_grid, list):m.anchor_grid = list(map(fn, m.anchor_grid))return self

parse_model函数

def parse_model(d, ch):  # model_dict, input_channels(3)LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")# nc:类别数; gd:'depth_multiple'; gw:'width_multiple'anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']# anchor数目, 每层为3na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # 每层的输出,na*(classes+5)no = na * (nc + 5)  # layers, savelist, ch_outlayers, save, c2 = [], [], ch[-1] # from, number, module, args# 以[-1, 1, Conv, [64, 6, 2, 2]为例, ch=[3], f=-1, n=1, m=Conv, args=[64, 6, 2, 2]#   [-1, 1, Conv, [128, 3, 2]#   [-1, 3, C3, [128]]#   [-1, 1, SPPF, [1024, 5]]#   [-1, 1, nn.Upsample, [None, 2, 'nearest']]#   [[-1, 6], 1, Concat, [1]]#   [-1, 3, C3, [512, False]]for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):# 把strings转为本身的类型m = eval(m) if isinstance(m, str) else m  for j, a in enumerate(args):try:# 列表形式args[j] = eval(a) if isinstance(a, str) else a  except NameError:pass# depth_gain 深度缩放因子n = n_ = max(round(n*gd), 1) if n > 1 else n # 对于不同类型的卷积模块   if m in [Conv, DWConv,  CrossConv, GhostConv, Bottleneck, GhostBottleneck,BottleneckCSP, MobileBottleneck, SPP, SPPF, MixConv2d, Focus,InvertedResidual, ConvBNReLU, C3, C3TR, C3SPP, C3Ghost, CoordAtt,CoordAttv2, OSA_Stage]:# i=0, c1=3,  c2=64;  # i=1, c1=32, c2=128;  # i=2, c1=64, c2=128;# c1输入通道;c2输出通道;c1, c2 = ch[f], args[0]# width_gain 宽度缩放因子# 说明不是输出if c2 != no:  # 输出通道数必须为8的倍数c2 = make_divisible(c2*gw, 8)# i=0, [3,  32, 6, 2, 2]# i=1, [32, 64, 3, 2]# i=2, [64, 64]args = [c1, c2, *args[1:]]# 堆叠次数number of repeats# 注意网络设计理念:stage ---> block ---> layerif m in [BottleneckCSP, C3, C3TR, C3Ghost]:args.insert(2, n)  n = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m is Detect:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)elif m is ASFF_Detect :args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2elif m is ConvNeXt_Block:c2 = args[0]args = args[1:]else:c2 = ch[f]# module# Conv(3, 32, 6, 2, 2]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # m ===> <class 'models.common.Conv'># str(m)[8:-2] ===> models.common.Convt = str(m)[8:-2].replace('__main__.', '')  # 参数(parameters)/模型参数, 由模型通过学习得到的变量,比如权重和偏置.# m_.parameters(): <generator object Module.parameters at 0x7fcf4c2059d0>np = sum(x.numel() for x in m_.parameters()) # attach index, 'from' index, type, number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np  LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # savelist  [6, 4, 14, 10, 17, 20, 23]save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # layers列表layers.append(m_)if i == 0:ch = []# ch列表ch.append(c2)return nn.Sequential(*layers), sorted(save)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/261468.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Maven 私服 Nexus3

一、Maven和Nexus3 简介 Maven是一个采用纯Java编写的开源项目管理工具&#xff0c;采用一种被称之为Project Object Model(POM)概念来管理项目&#xff0c;所有的项目配置信息都被定义在一个叫做POM.xml的文件中, 通过该文件Maven可以管理项目的整个生命周期&#xff0c;包括…

Unity xLua开发环境搭建与基础进阶

Unity是一款非常流行的游戏开发引擎&#xff0c;而xLua是一个为Unity开发者提供的Lua框架&#xff0c;可以让开发者使用Lua语言来进行游戏开发。在本文中&#xff0c;我们将介绍如何搭建Unity xLua开发环境&#xff0c;并进行基础进阶的学习。 环境搭建 首先&#xff0c;我们需…

华为算法题 go语言

1 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数&#xff0c;并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;数组中同一个元素在答案里不能重复出现。 你可以按任意顺序返…

Internet Download Manager 6.42.3 (IDM) 中文免激活绿色版

相信很多网友都遇到过一种情况&#xff0c;网页有些视频资源或者音频资源不知道如何下载&#xff0c;一直不知道如何解决&#xff0c;为此小编特意带来了这款&#xff1a;Internet Download Manager电脑版&#xff0c;这是一款非常专业且十分好用的下载工具&#xff0c;也就是大…

Mysql系列之命令行登录、连接工具登录、数据库表常用命令

登录与常用命令 连接工具登录命令行登录数据库1、查看数据库2、指定数据库3、查看当前数据库4、建库语句 数据表1、查看数据表2、查看表结构信息3、查看建表语句4、建表语句 连接工具登录 首先下载mysql连接工具&#xff0c;解压后直接打开软件&#xff0c;按以下步骤操作&…

单调栈总结以及Leetcode案例解读与复盘

单调栈总结以及Leetcode案例解读与复盘 一、单调栈是什么&#xff1f; 单调栈&#xff08;monotonous stack&#xff09;是指栈的内部从栈底到栈顶满足单调性的栈结构。 二、如何维护单调性 新元素入栈时&#xff0c;会与栈顶元素进行比较&#xff0c;使得栈始终保持单调性…

LInux-信号1

文章目录 前言一、信号是什么&#xff1f;二、学习步骤使用kill -l命令查看信号列表可以看到有那么多信号&#xff0c;那么进程是如何识别这么多信号的呢&#xff1f; 使用kill命令终止进程信号的捕捉kill函数raise函数abort函数 Core dump如何查看自己的核心转储功能是否被打开…

公司如何防止终端核心文件数据\资料外泄、泄漏?

如何防止电脑文件被拷贝&#xff1f; 防止电子文件泄密是一个重要的信息安全问题。 PC端地址&#xff1a; https://isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c5dfedee 以下是一些建议的措施&#xff1a; 加强员工教育和培训&#xff1a;提高员工对电子文…

【Python】2019年蓝桥杯省赛真题——完全二叉树的权值

蓝桥杯 2019 省 A&B&#xff1a;完全二叉树的权值 题目描述 给定一棵包含 N N N 个节点的完全二叉树&#xff0c;树上每个节点都有一个权值&#xff0c;按从上到下、从左到右的顺序依次是 A 1 , A 2 , ⋯ A N A_1,A_2, \cdots A_N A1​,A2​,⋯AN​&#xff0c;如下图所…

FISCO BCOS(十七)利用脚本进行区块链系统监控

要利用脚本进行区块链系统监控&#xff0c;你可以使用各种编程语言编写脚本&#xff0c;如Python、Shell等 利用脚本进行区块链系统监控可以提高系统的稳定性、可靠性&#xff0c;并帮助及时发现和解决潜在问题&#xff0c;从而确保区块链网络的正常运行。本文可以利用脚本来解…

【网站项目】167校园失物招领小程序

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

四、分类算法 - 随机森林

目录 1、集成学习方法 2、随机森林 3、随机森林原理 4、API 5、总结 sklearn转换器和估算器KNN算法模型选择和调优朴素贝叶斯算法决策树随机森林 1、集成学习方法 2、随机森林 3、随机森林原理 4、API 5、总结

无人机快递(物流)技术方案,无人机快递(物流)基础知识

无人机快递技术是一种利用无人机进行快递配送的先进技术。通过利用无人机&#xff0c;快递企业能够在偏远地区或难以通行的地区提供配送服务&#xff0c;同时提高配送效率并降低人力成本。 无人机基本情况 无人驾驶飞机简称“无人机”&#xff0c;是利用无线电遥控设备和自备的…

板块一 Servlet编程:第七节 ServletContext对象全解与Servlet三大域对象总结 来自【汤米尼克的JAVAEE全套教程专栏】

板块一 Servlet编程&#xff1a;第七节 ServletContext对象全解与Servlet三大域对象总结 一、什么是ServletContext对象二、获取ServletContext对象及常用方法&#xff08;1&#xff09;获取 ServletContext 对象&#xff08;2&#xff09;ServletContext对象提供的方法 三、se…

js设计模式:依赖注入模式

作用: 在对象外部完成两个对象的注入绑定等操作 这样可以将代码解耦,方便维护和扩展 vue中使用use注册其他插件就是在外部创建依赖关系的 示例: class App{constructor(appName,appFun){this.appName appNamethis.appFun appFun}}class Phone{constructor(app) {this.nam…

开年红!亚信安全荣获2023年网络安全国家标准优秀实践案例一等奖

近日&#xff0c;全国网络安全标准化技术委员会&#xff08;以下简称“网安标委”&#xff09;正式发布《关于公布2023年网络安全国家标准优秀实践案例获奖名单的通知》&#xff0c;由国家信息中心牵头&#xff0c;亚信安全等多家单位联合申报的“GB/T42583-2023《信息安全技术…

利用RBI(Remote Browser Isolation)技术访问ChatGPT

系统组网图 #mermaid-svg-Bza2puvd8MudMbqR {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-Bza2puvd8MudMbqR .error-icon{fill:#552222;}#mermaid-svg-Bza2puvd8MudMbqR .error-text{fill:#552222;stroke:#552222;…

惠尔顿安全审计系统任意文件读取漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

SpringMVC(十二)SpringMVC执行流程

一、SpringMVC常用组件 DispatcherServlet:前端控制器,不需要工程师开发,由框架提供 作用:统一处理请求和响应,整个流程控制的中心,由它调用其它组件处理用户的请求 HandlerMapping:处理器映射器,不需要工程师开发,由框架提供 作用:根据请求的url、method等信息查找Han…

嵌入式学习之Linux入门篇——使用VMware创建Unbuntu虚拟机

目录 主机硬件要求 VMware 安装 安装Unbuntu 18.04.6 LTS 新建虚拟机 进入Unbuntu安装环节 主机硬件要求 内存最少16G 硬盘最好分出一个单独的盘&#xff0c;而且最少预留200G&#xff0c;可以使用移动固态操作系统win7/10/11 VMware 安装 版本&#xff1a;VMware Works…