【大数据】Flink 内存管理(二):JobManager 内存分配(含实际计算案例)

Flink 内存管理》系列(已完结),共包含以下 4 篇文章:

  • Flink 内存管理(一):设置 Flink 进程内存
  • Flink 内存管理(二):JobManager 内存分配(含实际计算案例)
  • Flink 内存管理(三):TaskManager 内存分配(理论篇)
  • Flink 内存管理(四):TaskManager 内存分配(实战篇)

😊 如果您觉得这篇文章有用 ✔️ 的话,请给博主一个一键三连 🚀🚀🚀 吧 (点赞 🧡、关注 💛、收藏 💚)!!!您的支持 💖💖💖 将激励 🔥 博主输出更多优质内容!!!

Flink 内存管理(二):JobManager 内存分配

  • 1.分配 Total Process Size
  • 2.分配 Total Flink Size
  • 3.单独分配 Heap Size
  • 4.分配 Total Process Size 和 Heap Size
  • 5.分配 Total Flink Size 和 Heap Size

JobManager 是 Flink 集群的控制元素。它由三个不同的组件组成: 资源管理器(Resource Manager)、调度器(Dispatcher)和每个运行中的 Flink 作业的一个作业管理器(JobMaster)。

JobManager 的内存模型如下:
在这里插入图片描述
以上 Total Process Memory 的模型图可以分为以下的 4 个内存组件,如果在分配内存的时候,显示的指定了组件其中的 1 1 1 个或者多个,那么 JVM Overhead 的值就是在其它组件确定的情况下,用 Total Process Size - 其它获取的值,必须在 min - max 之间,如果没有指定组件的值,那么就按照 0.1 0.1 0.1 的比例进行计算得到,如果计算出的值小于 minmin,如果大于 maxmax,如果 minmax 指定的相等,那么这个 JVM Overhead 就是一个确定的值!

内存组件
配置选项
内存组件的功能
JVM Heapjobmanager.memory.heap.sizeJobManager 的 JVM 堆内存大小。这个大小取决于提交的作业个数和作业的结构以及用户代码的要求。主要用来运行 Flink 框架,执行作业提交时的用户代码以及 Checkpoint 的回调代码。
Off-Heap Memoryjobmanager.memory.off-heap.sizeJM 的对外内存的大小。涵盖了所有 Direct 和 Native 的内存分配。用来执行 akka 等外部依赖,同时也负责运行 Checkpoint 回调及作业提交时的用户代码,有默认值 128 M 128M 128M
JVM Metaspacejobmanager.memory.jvm-metaspace.sizeJM 的元空间大小,有默认值 256 M 256M 256M, 属于 Native Memory。
JVM Overheadjobmanager.memory.jvm-overhead.min jobmanager.memory.jvm-overhead.max jobmanager.memory.jvm-overhead.fractionJVM 额外开销。为 Thread Stacks,Code Cache,Garbage Collection Space 预留的 Native Memory,有默认的 faction of total process size,但是必须在其 min & max 之间。

在 《Flink 内存管理(一):设置 Flink 进程内存》中我们提到,必须使用下述三种方法之一配置 Flink 的内存(本地执行除外),否则 Flink 启动将失败。这意味着必须明确配置以下选项子集之一,这些子集没有默认值。

序号for TaskManagerfor JobManager
1️⃣taskmanager.memory.flink.sizejobmanager.memory.flink.size
2️⃣taskmanager.memory.process.sizejobmanager.memory.process.size
3️⃣taskmanager.memory.task.heap.sizetaskmanager.memory.managed.sizejobmanager.memory.heap.size

1.分配 Total Process Size

  • jobmanager.memory.process.size

在这里插入图片描述
在这里插入图片描述

此时我们只显示指定了 jobmanager.memory.process.size 的值,没有指定其它组件,此时整个 JobManager 的 JVM 进程能占用的内存为 2000 M 2000M 2000M

  • Total Process Size = 2000 M = 2000M =2000M(这是分配的基准值)
  • JVM Overhead 因为没有指定其它组件内存,所以被按照 0.1 0.1 0.1 的比例推断成: 2000 M × 0.1 × 1024 × 1024 = 209715203 B = 200 M 2000M × 0.1 × 1024 × 1024 = 209715203B = 200M 2000M×0.1×1024×1024=209715203B=200M
  • JVM Metaspace 默认值为 256 M 256M 256M
  • Off-Heap Memeory 默认值为 128 M 128M 128M
  • JVM Heap 最终被推断为 2000 M − 200 M − 256 M − 128 M = 1.38 G 2000M - 200M - 256M - 128M = 1.38G 2000M200M256M128M=1.38G

为啥 JVM Heap 只有 1.33 G B 1.33GB 1.33GB 而不是 1.38 G B 1.38GB 1.38GB 呢?

在这里插入图片描述
其实这个取决于你使用的 GC 算法会占用其中很小一部分固定内存作为 Non-Heap,该占用部分大小为: 1.38 − 1.33 = 0.05 G B 1.38-1.33 = 0.05GB 1.381.33=0.05GB

2.分配 Total Flink Size

  • jobmanager.memory.flink.size

在这里插入图片描述
在这里插入图片描述

此时我们只显示指定了 jobmanager.memory.flink.size 的值,也没有指定其它组件如 Heap Size,此时整个 JobManager 的 JVM 进程除了 JVM OverheadJVM Metaspace 之外能占用的内存为 2000 M 2000M 2000M

  • Total Flink Size = 2000 M = 1.95 G = 2000M = 1.95G =2000M=1.95G(这属于 Total Process Size 的组件之一,Overhead 只能最后按剩余的内存来被推断)
  • JVM Metaspace 默认值为 256 M 256M 256M(固定默认值)
  • Off-Heap Memeory 默认值为 128 M 128M 128M(固定默认值)
  • JVM Heap = 2000 M − 128 M − 80 M B ( G C 算法占用) = 1.75 G B = 2000M - 128M - 80MB(GC算法占用)= 1.75GB =2000M128M80MBGC算法占用)=1.75GB
  • 根据 JVM Overhead = = =(JVM Overhead + Metaspace 256 M 256M 256M + Flink Size 2000 M ) × 0.1 2000 M) ×\ 0.1 2000M)× 0.1,计算可得:
    • Total Process Size = 2.448 G B = 2.448GB =2.448GB
    • JVM Overhead = 2.448 G B × 0.1 = 262843055 B = 250.667 M B = 2.448GB × 0.1 = 262843055B = 250.667MB =2.448GB×0.1=262843055B=250.667MB,在 192 M ~ 1 G B 192M~1GB 192M1GB,为有效

最终资源的分配如以下日志所示:

在这里插入图片描述

3.单独分配 Heap Size

  • jobmanager.memory.heap.size

在这里插入图片描述
在这里插入图片描述

此时我们只显示指定了 jobmanager.memory.heap.size 的值,相当于显示配置了组件的值,此时整个 JobManager 的 JVM Heap 被指定为最大内存为 1000 M 1000M 1000M

  • JVM Heap 被指定为 1000 M 1000M 1000M,但是得从 GC 算法中扣除 41 M B 41MB 41MB,实际 JVM Heap = 959 M B = 959MB =959MB
  • JVM Metaspace 默认值为 256 M 256M 256M
  • Off-Heap Memeory 默认值为 128 M 128M 128M
  • Total Flink Size = 1128 M B = 1.102 G B = 1128MB = 1.102GB =1128MB=1.102GB
  • JVM Overhead = ( 1128 M B + 256 M + = (1128MB + 256M + =(1128MB+256M+ JVM Overhead ) × 0.1 ) × 0.1 )×0.1
    • JVM Overhead = 153.778 < 192 M B = 153.778 < 192MB =153.778<192MB(默认的 min),所以 JVM Overhead = 192 M B = 192MB =192MB
  • Total Process Size = 1128 M B + 256 M + = 1128MB + 256M + =1128MB+256M+ JVM Overhead = 1576 M B = 1.5390625 G B = 1.539 G B = 1576MB = 1.5390625GB = 1.539GB =1576MB=1.5390625GB=1.539GB

在这里插入图片描述

4.分配 Total Process Size 和 Heap Size

在这里插入图片描述
在这里插入图片描述
由于指定了 heap.size 内存组件的的大小,那么 JVM Overhead 就是取剩余的 Total Process Size 的内存空间。

  • Total Process Size = 2000 M B = 2000MB =2000MB && JVM Heap = 1000 M B = 1000MB =1000MB,实际只有 959 M B 959MB 959MB,因为减去了 41 M B 41MB 41MB 的 GC 算法占用空间
  • JVM Metaspace 默认值为 256 M 256M 256M
  • Off-Heap Memeory 默认值为 128 M 128M 128M
  • Total Flink Size = 1000 M B + 128 M B = 1128 M B = 1000MB + 128MB = 1128MB =1000MB+128MB=1128MB
  • JVM Overhead = 2000 M B − 1128 M B − 256 M B = 616 M B = 2000MB - 1128MB - 256MB = 616MB =2000MB1128MB256MB=616MB

在这里插入图片描述

5.分配 Total Flink Size 和 Heap Size

在这里插入图片描述
在这里插入图片描述

由于指定了 head.size 组件的大小,那么 Overhead 就按照剩余 Total Process Size 的内存空间分配。

  • Total Flink Size = 2000 M B = 2000MB =2000MB && JVM Heap = 1000 M B = 1000MB =1000MB,实际 959 M B 959MB 959MB,减去了 GC 算法的占用空间
  • JVM Off-Heap = 2000 M B − 1000 M B = 1000 M B = 2000MB - 1000MB = 1000MB =2000MB1000MB=1000MB
  • JVM Metaspace = 256 M B = 256MB =256MB
  • 首先根据 JVM Overhead = ( = ( =(JVM Overhead + + + Metaspace 256 M 256M 256M + + + Flink Size 2000 M ) × 0.1 2000M) × 0.1 2000M)×0.1
    • Total Process Size = 2.448 G B = 2.448GB =2.448GB
    • JVM Overhead = 2.448 G B × 0.1 = 262843055 B = 250.667 M B = 2.448GB × 0.1 = 262843055B = 250.667MB =2.448GB×0.1=262843055B=250.667MB,在 192 M ~ 1 G B 192M~1GB 192M1GB,为有效
  • 最终确定 Total Process Size = 2.448 G B = 2.448GB =2.448GB && JVM Overhead = 250.667 M B = 250.667MB =250.667MB

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/263398.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

谷歌收购域名花费了100万美元的确让大家眼红

谷歌斥资100万美元购买了该域名。 卖个好价钱确实让大家眼红&#xff0c;但能不能卖到高价就是另一回事了。 首先&#xff0c;据统计&#xff0c;截至2008年底&#xff0c;我国域名总数达到1680万多个&#xff0c;可用的域名资源几乎无法统计&#xff0c;因为英文的组合太多了…

基于SpringBoot的家教管理系统

基于SpringBootVue的家教管理系统的设计与实现~ 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringBootMyBatis工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 前台主页 家教 个人中心 管理员界面 摘要 本文介绍了基于SpringBoot框架开发的家…

SpringMVC 学习(二)之第一个 SpringMVC 案例

目录 1 通过 Maven 创建一个 JavaWeb 工程 2 配置 web.xml 文件 3 创建 SpringMVC 配置文件 spring-mvc.xml 4 创建控制器 HelloController 5 创建视图 index.jsp 和 success.jsp 6 运行过程 7 参考文档 1 通过 Maven 创建一个 JavaWeb 工程 可以参考以下博文&#x…

【鸿蒙开发】第十四章 Stage模型应用组件-任务Mission

1 任务(Mission)管理场景 任务&#xff08;Mission&#xff09;管理相关的基本概念如下&#xff1a; AbilityRecord&#xff1a;系统服务侧管理一个UIAbility实例的最小单元&#xff0c;对应一个应用侧的UIAbility组件实例。系统服务侧管理UIAbility实例数量上限为512个。 Mi…

5.1 Ajax数据爬取之初介绍

目录 1. Ajax 数据介绍 2. Ajax 分析 2.1 Ajax 例子 2.2 Ajax 分析方法 &#xff08;1&#xff09;在网页页面右键&#xff0c;检查 &#xff08;2&#xff09;找到network&#xff0c;ctrl R刷新 &#xff08;3&#xff09;找 Ajax 数据包 &#xff08;4&#xff09;…

力扣用例题:2的幂

此题的解题方法在于根据用例调整代码 bool isPowerOfTwo(int n) {if(n1){return true;}if(n<0){return false;}while(n>2){if(n%21){return false;}nn/2; }if(n1){return false;}return true;}

Java 学习和实践笔记(20):static的含义和使用

static的本义是静止的。在计算机里就表示静态变量。 在Java中&#xff0c;从内存分析图上可以看到&#xff0c;它与类、常量池放在一个区里&#xff1a; 从图可以看到&#xff0c;普通的方法和对象属性&#xff0c;都在heep里&#xff0c;而static则在方法区里。 static声明的…

《凤凰架构》 -分布式事务章节 读书笔记

分布式事务严谨的定义&#xff1a;分布式环境下的事务处理机制 CAP定理&#xff1a;在一个分布式系统中&#xff0c;涉及共享数据问题时&#xff0c;以下三个特性最多只能同时满足两个 一致性&#xff1a;代表数据在任何时刻、任何分布式节点中看到的都是符合预期的&#xff0…

提升代码能力:程序员的进阶之路

提升代码能力&#xff1a;程序员的进阶之路 在当今日益发展的技术领域&#xff0c;程序员的代码能力对于个人职业发展至关重要。优秀的代码能力不仅能提高开发效率&#xff0c;还能产生高质量的软件和解决方案。然而&#xff0c;提升代码能力是一个不断学习和成长的过程。本文将…

备战蓝桥杯—— 双指针技巧巧答链表2

对于单链表相关的问题&#xff0c;双指针技巧是一种非常广泛且有效的解决方法。以下是一些常见问题以及使用双指针技巧解决&#xff1a; 合并两个有序链表&#xff1a; 使用两个指针分别指向两个链表的头部&#xff0c;逐一比较节点的值&#xff0c;将较小的节点链接到结果链表…

C语言实现简单选择排序

简单选择排序 简单选择排序的平均复杂度为 O(n2),但效率通常比相同平均复杂度的直接插入排序还要差。但由于选择排序是 内部排序&#xff0c;因此在内存严格受限的情况下还是可以用的。选择排序的原理很简单&#xff0c;如下图所示&#xff1a;持续从未处理元素中找到最小值并加…

windows安装 RabbitMQ

首先打开 RabbitMQ 官网&#xff0c;点击 Get Started(开始) 点击 Download Installation(下载安装)。 这里提供了两种方式进行安装&#xff0c;我们使用第二种方法。 使用 chocolatey以管理用户身份使用官方安装程序 往下滑&#xff0c;第二种方法需要 Erlang 的依赖&#x…

pikachu靶场-File Inclusion

介绍&#xff1a; File Inclusion(文件包含漏洞)概述 文件包含&#xff0c;是一个功能。在各种开发语言中都提供了内置的文件包含函数&#xff0c;其可以使开发人员在一个代码文件中直接包含&#xff08;引入&#xff09;另外一个代码文件。 比如 在PHP中&#xff0c;提供了&…

【webrtc】m77 PacedSender

mediasoup是m77的代码,m77的代码并没有paced controller ,而且与paced sender 的逻辑混在了一起。结合大神们的代码分析,对照m77 进行 理解。m77 有ProbeController。给pacersender 更新飞行数据:PacedSender::InsertPacket(size_t bytes) 对应的是 PacingController::OnPa…

【Java】基础——反射(Reflection)基础

目录 1. 反射概述 引言 1.1 反射是什么&#xff1f; 1.2 反射提供的功能 1.3 反射的作用 2. 获取类的信息 2.1 获取反射中的Class对象 2.2 通过反射创建类对象 2.3 通过反射获取类的成员变量 2.4 通过反射获取类的方法 1. 反射概述 引言 本篇对反射基础进行了讲解。…

Java EE改名Jakarta EE,jakarta对程序开发的影响

一、前言 很多Java程序员在使用新版本的Spring6或者springboot3版本的时候&#xff0c;发现了一些叫jakarta的包。我在阅读开源工作流引擎camunda源代码的时候&#xff0c;也发展了大量jakarta的工程包。 比如&#xff1a;camunda的webapps编译工程就提供了2种方式javax和jaka…

Stable Diffusion 模型分享:A-Zovya RPG Artist Tools(RPG 大师工具箱)

本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八下载地址模型介绍 A-Zovya RPG Artist

java+springmvc+springboot众筹救助系统mybatis

儿童众筹救助系统在流畅性&#xff0c;续航能力&#xff0c;等方方面面都有着很大的优势。这就意味着儿童众筹救助系统的设计可以比其他系统更为出色的能力&#xff0c;可以更高效的完成最新的救助基金、救助申请、众筹项目、捐赠信息等功能。 此系统设计主要采用的是JAVA语言来…

前端学习——vue学习

文章目录 1. < el-form> 属性 model、prop、rules2. v-bind 与 v-model3. v-if 与 v-show4. v-for 循环语句5. 计算属性 computed6. 监视属性 watch7. 下拉框 el-select、el-option8. 自定义事件9. async与await实现异步调用 1. < el-form> 属性 model、prop、rule…

Escalate_Linux-环境变量劫持提权(5)

环境变量劫持提权 在Shll输入命令时&#xff0c;Shel会按PAH环境变量中的路径依次搜索命令&#xff0c;若是存在同名的命令&#xff0c;则执行最先找到的&#xff0c;若是PATH中加入了当前目录&#xff0c;也就是“”这个符号&#xff0c;则可能会被黑客利用&#xff0c;例如在…