文章目录
- 权重初始化方法
- Xavier初始化(Xavier initialization)
- Kaiming初始化,也称为He初始化
- LeCun 初始化
- 正态分布与均匀分布
- Orthogonal Initialization
- Sparse Initialization
- n_in和n_out
- 代码实现
权重初始化方法
Xavier初始化(Xavier initialization)
是一种用于初始化神经网络权重的方法,也称为Glorot初始化。更有效地传播信号并减少梯度消失或梯度爆炸的问题。适用于激活函数为tanh或sigmoid的情况。
Xavier初始化的计算方法如下:
- Glorot(或 Xavier)初始化:
- 适用于激活函数如sigmoid和tanh。
- 初始化公式: σ = 2 n in + n out \sigma = \sqrt{\frac{2}{n_{\text{in}} + n_{\text{out}}}} σ=nin+nout2
其中, n in n_{\text{in}} nin 是输入单元数, n out n_{\text{out}} nout 是输出单元数。
对于单个神经元的权重w
,从均匀分布
或正态分布
中随机采样,具体取决于所选择的激活函数:
- 如果使用
tanh激活函数
,从均匀分布
采样:- 采样范围:
[-sqrt(6 / (n_in + n_out)), sqrt(6 / (n_in + n_out))]
- 其中
n_in
是上一层的输入节点数量,n_out
是当前层的输出节点数量。
- 采样范围:
- 如果使用
sigmoid激活函数
,从正态分布
采样:- 均值:0
- 方差:
sqrt(2 / (n_in + n_out))
- 其中n_in是上一层的输入节点数量,n_out是当前层的输出节点数量。
Kaiming初始化,也称为He初始化
- He 初始化:
- 适用于ReLU及其变种(如LeakyReLU)激活函数。
- 初始化公式: σ = 2 n in \sigma = \sqrt{\frac{2}{n_{\text{in}}}} σ=nin2
这种初始化方法主要用于修正线性单元(Rectified Linear Units,ReLU)激活函数的神经网络。
与Xavier初始化适用于tanh和sigmoid等S型激活函数不同,Kaiming初始化专门针对ReLU激活函数
的特性进行优化。ReLU是一个常用的非线性激活函数,它在输入大于零时保持不变,在输入小于等于零时输出为零。
Kaiming初始化的计算方法如下:
对于单个神经元的权重w,从均匀分布或正态分布中随机采样,具体取决于所选择的激活函数:
-
如果使用
ReLU激活函数
,从正态分布
采样:- 均值:0
- 方差:
sqrt(2 / n_in)
- 其中n_in是上一层的输入节点数量。
-
对于带有ReLU激活的卷积层,可以使用相同的初始化方法,只是需要考虑卷积层的输入通道数量(即n_in)。
LeCun 初始化
- 适用于Sigmoid激活函数。
- 初始化公式: σ = 1 n in \sigma = \sqrt{\frac{1}{n_{\text{in}}}} σ=nin1
正态分布与均匀分布
- 使用较小的标准差(如0.01)从正态分布中采样权重。
- 使用较小的范围(如-0.01到0.01)从均匀分布中采样权重。
Orthogonal Initialization
- 使用正交矩阵初始化权重。这种初始化方法对于某些任务和模型架构可能很有益。
Sparse Initialization
- 将大部分权重初始化为0,只初始化一小部分非零的权重。
n_in和n_out
n_in
和n_out
分别表示神经网络层的输入节点数量和输出节点数量。这些节点也称为神经元,它们是网络的基本组成部分。
-
n_in:代表上一层(前一层)的节点数量,也就是当前层的输入数量。在神经网络中,每个神经元都会接收来自上一层所有节点的输入,这些输入被加权和后传递给当前神经元的激活函数。因此,n_in指的是上一层与当前层之间的连接数量。
-
n_out:代表当前层的节点数量,也就是当前层的输出数量。每个神经元会将经过激活函数处理后的结果传递给下一层所有节点,形成下一层的输入。因此,n_out指的是当前层与下一层之间的连接数量。
代码实现
#include <iostream>
#include <Eigen/Dense>
#include <random>
#include <cmath>Eigen::MatrixXd glorotInitialize(int rows, int cols);
Eigen::MatrixXd heInitialize(int rows, int cols);
Eigen::MatrixXd lecunInitialize(int rows, int cols);
Eigen::MatrixXd normalDistributionInitialize(int rows, int cols, double std_dev=0.01);
Eigen::MatrixXd uniformDistributionInitialize(int rows, int cols, double limit=0.01);
Eigen::MatrixXd orthogonalInitialize(int rows, int cols);
// Sparse Initialization需要额外参数来确定稀疏度,这里我们使用一个简化版本,指定一个非零的权重数。
Eigen::MatrixXd sparseInitialize(int rows, int cols, int nonZeroCount);//1. **Glorot (Xavier) Initialization**:Eigen::MatrixXd glorotInitialize(int rows, int cols) {std::random_device rd;std::mt19937 gen(rd());double limit = sqrt(6.0 / (rows + cols));std::uniform_real_distribution<> dis(-limit, limit);Eigen::MatrixXd matrix(rows, cols);for(int i = 0; i < rows; i++) {for(int j = 0; j < cols; j++) {matrix(i, j) = dis(gen);}}return matrix;
}//**He Initialization**:Eigen::MatrixXd heInitialize(int rows, int cols) {std::random_device rd;std::mt19937 gen(rd());double std_dev = sqrt(2.0 / rows);std::normal_distribution<> dis(0, std_dev);Eigen::MatrixXd matrix(rows, cols);for(int i = 0; i < rows; i++) {for(int j = 0; j < cols; j++) {matrix(i, j) = dis(gen);}}return matrix;
}//3. **LeCun Initialization**:Eigen::MatrixXd lecunInitialize(int rows, int cols) {std::random_device rd;std::mt19937 gen(rd());double std_dev = sqrt(1.0 / rows);std::normal_distribution<> dis(0, std_dev);Eigen::MatrixXd matrix(rows, cols);for(int i = 0; i < rows; i++) {for(int j = 0; j < cols; j++) {matrix(i, j) = dis(gen);}}return matrix;
}//4. **Normal Distribution Initialization**:Eigen::MatrixXd normalDistributionInitialize(int rows, int cols, double std_dev) {std::random_device rd;std::mt19937 gen(rd());std::normal_distribution<> dis(0, std_dev);Eigen::MatrixXd matrix(rows, cols);for(int i = 0; i < rows; i++) {for(int j = 0; j < cols; j++) {matrix(i, j) = dis(gen);}}return matrix;
}//5. **Uniform Distribution Initialization**:Eigen::MatrixXd uniformDistributionInitialize(int rows, int cols, double limit) {std::random_device rd;std::mt19937 gen(rd());std::uniform_real_distribution<> dis(-limit, limit);Eigen::MatrixXd matrix(rows, cols);for(int i = 0; i < rows; i++) {for(int j = 0; j < cols; j++) {matrix(i, j) = dis(gen);}}return matrix;
}//6. **Orthogonal Initialization**:
Eigen::MatrixXd orthogonalInitialize(int rows, int cols) {// 创建一个随机矩阵std::random_device rd;std::mt19937 gen(rd());std::normal_distribution<> dis(0, 1);Eigen::MatrixXd randomMatrix(rows, cols);for(int i = 0; i < rows; i++) {for(int j = 0; j < cols; j++) {randomMatrix(i, j) = dis(gen);}}// 使用QR分解获得正交矩阵Eigen::HouseholderQR<Eigen::MatrixXd> qr(randomMatrix);Eigen::MatrixXd orthogonalMatrix = qr.householderQ();// 如果您需要一个具有特定维度的正交矩阵(例如rows != cols),您可以选择一个子矩阵return orthogonalMatrix.block(0, 0, rows, cols);
}//7. **Sparse Initialization**:Eigen::MatrixXd sparseInitialize(int rows, int cols, int nonZeroCount) {Eigen::MatrixXd matrix = Eigen::MatrixXd::Zero(rows, cols);std::random_device rd;std::mt19937 gen(rd());std::uniform_real_distribution<> dis(-1, 1);for(int i = 0; i < nonZeroCount; i++) {int r = rand() % rows;int c = rand() % cols;matrix(r, c) = dis(gen);}return matrix;
}
int main() {int rows = 5;int cols = 5;// Glorot InitializationEigen::MatrixXd weights_glorot = glorotInitialize(rows, cols);std::cout << "Glorot Initialized Weights:" << std::endl << weights_glorot << std::endl << std::endl;// He InitializationEigen::MatrixXd weights_he = heInitialize(rows, cols);std::cout << "He Initialized Weights:" << std::endl << weights_he << std::endl << std::endl;// LeCun InitializationEigen::MatrixXd weights_lecun = lecunInitialize(rows, cols);std::cout << "LeCun Initialized Weights:" << std::endl << weights_lecun << std::endl << std::endl;// Normal Distribution InitializationEigen::MatrixXd weights_normal = normalDistributionInitialize(rows, cols);std::cout << "Normal Distribution Initialized Weights:" << std::endl << weights_normal << std::endl << std::endl;// Uniform Distribution InitializationEigen::MatrixXd weights_uniform = uniformDistributionInitialize(rows, cols);std::cout << "Uniform Distribution Initialized Weights:" << std::endl << weights_uniform << std::endl << std::endl;// Sparse Initializationint nonZeroCount = 10; // As an example, set 10 weights to non-zero valuesEigen::MatrixXd weights_sparse = sparseInitialize(rows, cols, nonZeroCount);std::cout << "Sparse Initialized Weights with " << nonZeroCount << " non-zero values:" << std::endl << weights_sparse << std::endl;return 0;
}