739. 每日温度
请根据每日 气温 列表,重新生成一个列表。对应位置的输出为:要想观测到更高的气温,至少需要等待的天数。如果气温在这之后都不会升高,请在该位置用 0 来代替。
例如,给定一个列表 temperatures = [73, 74, 75, 71, 69, 72, 76, 73],你的输出应该是 [1, 1, 4, 2, 1, 1, 0, 0]。
提示:气温 列表长度的范围是 [1, 30000]。每个气温的值的均为华氏度,都是在 [30, 100] 范围内的整数
class Solution:def dailyTemperatures(self, temperatures: List[int]) -> List[int]:answer = [0]*len(temperatures)stack = [0]for i in range(1,len(temperatures)):# 情况一和情况二if temperatures[i]<=temperatures[stack[-1]]:stack.append(i)# 情况三else:while len(stack) != 0 and temperatures[i]>temperatures[stack[-1]]:answer[stack[-1]]=i-stack[-1]stack.pop()stack.append(i)return answer
496.下一个更大元素 I
给你两个 没有重复元素 的数组 nums1 和 nums2 ,其中nums1 是 nums2 的子集。
请你找出 nums1 中每个元素在 nums2 中的下一个比其大的值。
nums1 中数字 x 的下一个更大元素是指 x 在 nums2 中对应位置的右边的第一个比 x 大的元素。如果不存在,对应位置输出 -1 。
示例 1:
输入: nums1 = [4,1,2], nums2 = [1,3,4,2].
输出: [-1,3,-1]
解释:
对于 num1 中的数字 4 ,你无法在第二个数组中找到下一个更大的数字,因此输出 -1 。
对于 num1 中的数字 1 ,第二个数组中数字1右边的下一个较大数字是 3 。
对于 num1 中的数字 2 ,第二个数组中没有下一个更大的数字,因此输出 -1 。
示例 2:
输入: nums1 = [2,4], nums2 = [1,2,3,4].
输出: [3,-1]
解释:
对于 num1 中的数字 2 ,第二个数组中的下一个较大数字是 3 。
对于 num1 中的数字 4 ,第二个数组中没有下一个更大的数字,因此输出-1 。
提示:
1 <= nums1.length <= nums2.length <= 1000
0 <= nums1[i], nums2[i] <= 10^4
nums1和nums2中所有整数 互不相同
nums1 中的所有整数同样出现在 nums2 中
class Solution:def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]:result = [-1]*len(nums1)stack = [0]for i in range(1,len(nums2)):# 情况一情况二if nums2[i]<=nums2[stack[-1]]:stack.append(i)# 情况三else:while len(stack)!=0 and nums2[i]>nums2[stack[-1]]:if nums2[stack[-1]] in nums1:index = nums1.index(nums2[stack[-1]])result[index]=nums2[i]stack.pop() stack.append(i)return result
503.下一个更大元素II
给定一个循环数组(最后一个元素的下一个元素是数组的第一个元素),输出每个元素的下一个更大元素。数字 x 的下一个更大的元素是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1。
示例 1:
输入: [1,2,1]
输出: [2,-1,2]
解释: 第一个 1 的下一个更大的数是 2;数字 2 找不到下一个更大的数;第二个 1 的下一个最大的数需要循环搜索,结果也是 2。
提示:
1 <= nums.length <= 10^4
-10^9 <= nums[i] <= 10^9
# 方法 1:
class Solution:def nextGreaterElements(self, nums: List[int]) -> List[int]:dp = [-1] * len(nums)stack = []for i in range(len(nums)*2):while(len(stack) != 0 and nums[i%len(nums)] > nums[stack[-1]]):dp[stack[-1]] = nums[i%len(nums)]stack.pop()stack.append(i%len(nums))return dp# 方法 2:
class Solution:def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]:stack = []# 创建答案数组ans = [-1] * len(nums1)for i in range(len(nums2)):while len(stack) > 0 and nums2[i] > nums2[stack[-1]]:# 判断 num1 是否有 nums2[stack[-1]]。如果没有这个判断会出现指针异常if nums2[stack[-1]] in nums1:# 锁定 num1 检索的 indexindex = nums1.index(nums2[stack[-1]])# 更新答案数组ans[index] = nums2[i]# 弹出小元素# 这个代码一定要放在 if 外面。否则单调栈的逻辑就不成立了stack.pop()stack.append(i)return ans
2. 接雨水
力扣题目链接(opens new window)
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
示例 1:
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:
输入:height = [4,2,0,3,2,5]
输出:9
暴力解法:
class Solution:def trap(self, height: List[int]) -> int:res = 0for i in range(len(height)):if i == 0 or i == len(height)-1: continuelHight = height[i-1]rHight = height[i+1]for j in range(i-1):if height[j] > lHight:lHight = height[j]for k in range(i+2,len(height)):if height[k] > rHight:rHight = height[k]res1 = min(lHight,rHight) - height[i]if res1 > 0:res += res1return res双指针:
class Solution:def trap(self, height: List[int]) -> int:leftheight, rightheight = [0]*len(height), [0]*len(height)leftheight[0]=height[0]for i in range(1,len(height)):leftheight[i]=max(leftheight[i-1],height[i])rightheight[-1]=height[-1]for i in range(len(height)-2,-1,-1):rightheight[i]=max(rightheight[i+1],height[i])result = 0for i in range(0,len(height)):summ = min(leftheight[i],rightheight[i])-height[i]result += summreturn result单调栈
class Solution:def trap(self, height: List[int]) -> int:# 单调栈'''单调栈是按照 行 的方向来计算雨水从栈顶到栈底的顺序:从小到大通过三个元素来接水:栈顶,栈顶的下一个元素,以及即将入栈的元素雨水高度是 min(凹槽左边高度, 凹槽右边高度) - 凹槽底部高度雨水的宽度是 凹槽右边的下标 - 凹槽左边的下标 - 1(因为只求中间宽度)'''# stack储存index,用于计算对应的柱子高度stack = [0]result = 0for i in range(1, len(height)):# 情况一if height[i] < height[stack[-1]]:stack.append(i)# 情况二# 当当前柱子高度和栈顶一致时,左边的一个是不可能存放雨水的,所以保留右侧新柱子# 需要使用最右边的柱子来计算宽度elif height[i] == height[stack[-1]]:stack.pop()stack.append(i)# 情况三else:# 抛出所有较低的柱子while stack and height[i] > height[stack[-1]]:# 栈顶就是中间的柱子:储水槽,就是凹槽的地步mid_height = height[stack[-1]]stack.pop()if stack:right_height = height[i]left_height = height[stack[-1]]# 两侧的较矮一方的高度 - 凹槽底部高度h = min(right_height, left_height) - mid_height# 凹槽右侧下标 - 凹槽左侧下标 - 1: 只求中间宽度w = i - stack[-1] - 1# 体积:高乘宽result += h * wstack.append(i)return result# 单调栈压缩版
class Solution:def trap(self, height: List[int]) -> int:stack = [0]result = 0for i in range(1, len(height)):while stack and height[i] > height[stack[-1]]:mid_height = stack.pop()if stack:# 雨水高度是 min(凹槽左侧高度, 凹槽右侧高度) - 凹槽底部高度h = min(height[stack[-1]], height[i]) - height[mid_height]# 雨水宽度是 凹槽右侧的下标 - 凹槽左侧的下标 - 1w = i - stack[-1] - 1# 累计总雨水体积result += h * wstack.append(i)return result
84.柱状图中最大的矩形
力扣题目链接(opens new window)
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
1 <= heights.length <=10^5
0 <= heights[i] <= 10^4
# 暴力解法(leetcode超时)
class Solution:def largestRectangleArea(self, heights: List[int]) -> int:# 从左向右遍历:以每一根柱子为主心骨(当前轮最高的参照物),迭代直到找到左侧和右侧各第一个矮一级的柱子res = 0for i in range(len(heights)):left = iright = i# 向左侧遍历:寻找第一个矮一级的柱子for _ in range(left, -1, -1):if heights[left] < heights[i]:breakleft -= 1# 向右侧遍历:寻找第一个矮一级的柱子for _ in range(right, len(heights)):if heights[right] < heights[i]:breakright += 1width = right - left - 1height = heights[i]res = max(res, width * height)return res# 双指针
class Solution:def largestRectangleArea(self, heights: List[int]) -> int:size = len(heights)# 两个DP数列储存的均是下标indexmin_left_index = [0] * sizemin_right_index = [0] * sizeresult = 0# 记录每个柱子的左侧第一个矮一级的柱子的下标min_left_index[0] = -1 # 初始化防止while死循环for i in range(1, size):# 以当前柱子为主心骨,向左迭代寻找次级柱子temp = i - 1while temp >= 0 and heights[temp] >= heights[i]:# 当左侧的柱子持续较高时,尝试这个高柱子自己的次级柱子(DPtemp = min_left_index[temp]# 当找到左侧矮一级的目标柱子时min_left_index[i] = temp# 记录每个柱子的右侧第一个矮一级的柱子的下标min_right_index[size-1] = size # 初始化防止while死循环for i in range(size-2, -1, -1):# 以当前柱子为主心骨,向右迭代寻找次级柱子temp = i + 1while temp < size and heights[temp] >= heights[i]:# 当右侧的柱子持续较高时,尝试这个高柱子自己的次级柱子(DPtemp = min_right_index[temp]# 当找到右侧矮一级的目标柱子时min_right_index[i] = tempfor i in range(size):area = heights[i] * (min_right_index[i] - min_left_index[i] - 1)result = max(area, result)return result# 单调栈
class Solution:def largestRectangleArea(self, heights: List[int]) -> int:# Monotonic Stack'''找每个柱子左右侧的第一个高度值小于该柱子的柱子单调栈:栈顶到栈底:从大到小(每插入一个新的小数值时,都要弹出先前的大数值)栈顶,栈顶的下一个元素,即将入栈的元素:这三个元素组成了最大面积的高度和宽度情况一:当前遍历的元素heights[i]大于栈顶元素的情况情况二:当前遍历的元素heights[i]等于栈顶元素的情况情况三:当前遍历的元素heights[i]小于栈顶元素的情况'''# 输入数组首尾各补上一个0(与42.接雨水不同的是,本题原首尾的两个柱子可以作为核心柱进行最大面积尝试heights.insert(0, 0)heights.append(0)stack = [0]result = 0for i in range(1, len(heights)):# 情况一if heights[i] > heights[stack[-1]]:stack.append(i)# 情况二elif heights[i] == heights[stack[-1]]:stack.pop()stack.append(i)# 情况三else:# 抛出所有较高的柱子while stack and heights[i] < heights[stack[-1]]:# 栈顶就是中间的柱子,主心骨mid_index = stack[-1]stack.pop()if stack:left_index = stack[-1]right_index = iwidth = right_index - left_index - 1height = heights[mid_index]result = max(result, width * height)stack.append(i)return result# 单调栈精简
class Solution:def largestRectangleArea(self, heights: List[int]) -> int:heights.insert(0, 0)heights.append(0)stack = [0]result = 0for i in range(1, len(heights)):while stack and heights[i] < heights[stack[-1]]:mid_height = heights[stack[-1]]stack.pop()if stack:# area = width * heightarea = (i - stack[-1] - 1) * mid_heightresult = max(area, result)stack.append(i)return result