leetcode单调栈

739. 每日温度

请根据每日 气温 列表,重新生成一个列表。对应位置的输出为:要想观测到更高的气温,至少需要等待的天数。如果气温在这之后都不会升高,请在该位置用 0 来代替。

例如,给定一个列表 temperatures = [73, 74, 75, 71, 69, 72, 76, 73],你的输出应该是 [1, 1, 4, 2, 1, 1, 0, 0]。

提示:气温 列表长度的范围是 [1, 30000]。每个气温的值的均为华氏度,都是在 [30, 100] 范围内的整数

class Solution:def dailyTemperatures(self, temperatures: List[int]) -> List[int]:answer = [0]*len(temperatures)stack = [0]for i in range(1,len(temperatures)):# 情况一和情况二if temperatures[i]<=temperatures[stack[-1]]:stack.append(i)# 情况三else:while len(stack) != 0 and temperatures[i]>temperatures[stack[-1]]:answer[stack[-1]]=i-stack[-1]stack.pop()stack.append(i)return answer

496.下一个更大元素 I

给你两个 没有重复元素 的数组 nums1 和 nums2 ,其中nums1 是 nums2 的子集。

请你找出 nums1 中每个元素在 nums2 中的下一个比其大的值。

nums1 中数字 x 的下一个更大元素是指 x 在 nums2 中对应位置的右边的第一个比 x 大的元素。如果不存在,对应位置输出 -1 。

示例 1:

输入: nums1 = [4,1,2], nums2 = [1,3,4,2].
输出: [-1,3,-1]
解释:
对于 num1 中的数字 4 ,你无法在第二个数组中找到下一个更大的数字,因此输出 -1 。
对于 num1 中的数字 1 ,第二个数组中数字1右边的下一个较大数字是 3 。
对于 num1 中的数字 2 ,第二个数组中没有下一个更大的数字,因此输出 -1 。

示例 2:
输入: nums1 = [2,4], nums2 = [1,2,3,4].
输出: [3,-1]
解释:
对于 num1 中的数字 2 ,第二个数组中的下一个较大数字是 3 。
对于 num1 中的数字 4 ,第二个数组中没有下一个更大的数字,因此输出-1 。

提示:

1 <= nums1.length <= nums2.length <= 1000
0 <= nums1[i], nums2[i] <= 10^4
nums1和nums2中所有整数 互不相同
nums1 中的所有整数同样出现在 nums2 中

class Solution:def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]:result = [-1]*len(nums1)stack = [0]for i in range(1,len(nums2)):# 情况一情况二if nums2[i]<=nums2[stack[-1]]:stack.append(i)# 情况三else:while len(stack)!=0 and nums2[i]>nums2[stack[-1]]:if nums2[stack[-1]] in nums1:index = nums1.index(nums2[stack[-1]])result[index]=nums2[i]stack.pop()                 stack.append(i)return result

503.下一个更大元素II

给定一个循环数组(最后一个元素的下一个元素是数组的第一个元素),输出每个元素的下一个更大元素。数字 x 的下一个更大的元素是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1。

示例 1:

输入: [1,2,1]
输出: [2,-1,2]
解释: 第一个 1 的下一个更大的数是 2;数字 2 找不到下一个更大的数;第二个 1 的下一个最大的数需要循环搜索,结果也是 2。
提示:

1 <= nums.length <= 10^4
-10^9 <= nums[i] <= 10^9

# 方法 1:
class Solution:def nextGreaterElements(self, nums: List[int]) -> List[int]:dp = [-1] * len(nums)stack = []for i in range(len(nums)*2):while(len(stack) != 0 and nums[i%len(nums)] > nums[stack[-1]]):dp[stack[-1]] = nums[i%len(nums)]stack.pop()stack.append(i%len(nums))return dp# 方法 2:
class Solution:def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]:stack = []# 创建答案数组ans = [-1] * len(nums1)for i in range(len(nums2)):while len(stack) > 0 and nums2[i] > nums2[stack[-1]]:# 判断 num1 是否有 nums2[stack[-1]]。如果没有这个判断会出现指针异常if nums2[stack[-1]] in nums1:# 锁定 num1 检索的 indexindex = nums1.index(nums2[stack[-1]])# 更新答案数组ans[index] = nums2[i]# 弹出小元素# 这个代码一定要放在 if 外面。否则单调栈的逻辑就不成立了stack.pop()stack.append(i)return ans

2. 接雨水

力扣题目链接(opens new window)

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

示例 1:
在这里插入图片描述

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:

输入:height = [4,2,0,3,2,5]
输出:9

暴力解法:
class Solution:def trap(self, height: List[int]) -> int:res = 0for i in range(len(height)):if i == 0 or i == len(height)-1: continuelHight = height[i-1]rHight = height[i+1]for j in range(i-1):if height[j] > lHight:lHight = height[j]for k in range(i+2,len(height)):if height[k] > rHight:rHight = height[k]res1 = min(lHight,rHight) - height[i]if res1 > 0:res += res1return res双指针:
class Solution:def trap(self, height: List[int]) -> int:leftheight, rightheight = [0]*len(height), [0]*len(height)leftheight[0]=height[0]for i in range(1,len(height)):leftheight[i]=max(leftheight[i-1],height[i])rightheight[-1]=height[-1]for i in range(len(height)-2,-1,-1):rightheight[i]=max(rightheight[i+1],height[i])result = 0for i in range(0,len(height)):summ = min(leftheight[i],rightheight[i])-height[i]result += summreturn result单调栈
class Solution:def trap(self, height: List[int]) -> int:# 单调栈'''单调栈是按照 行 的方向来计算雨水从栈顶到栈底的顺序:从小到大通过三个元素来接水:栈顶,栈顶的下一个元素,以及即将入栈的元素雨水高度是 min(凹槽左边高度, 凹槽右边高度) - 凹槽底部高度雨水的宽度是 凹槽右边的下标 - 凹槽左边的下标 - 1(因为只求中间宽度)'''# stack储存index,用于计算对应的柱子高度stack = [0]result = 0for i in range(1, len(height)):# 情况一if height[i] < height[stack[-1]]:stack.append(i)# 情况二# 当当前柱子高度和栈顶一致时,左边的一个是不可能存放雨水的,所以保留右侧新柱子# 需要使用最右边的柱子来计算宽度elif height[i] == height[stack[-1]]:stack.pop()stack.append(i)# 情况三else:# 抛出所有较低的柱子while stack and height[i] > height[stack[-1]]:# 栈顶就是中间的柱子:储水槽,就是凹槽的地步mid_height = height[stack[-1]]stack.pop()if stack:right_height = height[i]left_height = height[stack[-1]]# 两侧的较矮一方的高度 - 凹槽底部高度h = min(right_height, left_height) - mid_height# 凹槽右侧下标 - 凹槽左侧下标 - 1: 只求中间宽度w = i - stack[-1] - 1# 体积:高乘宽result += h * wstack.append(i)return result# 单调栈压缩版
class Solution:def trap(self, height: List[int]) -> int:stack = [0]result = 0for i in range(1, len(height)):while stack and height[i] > height[stack[-1]]:mid_height = stack.pop()if stack:# 雨水高度是 min(凹槽左侧高度, 凹槽右侧高度) - 凹槽底部高度h = min(height[stack[-1]], height[i]) - height[mid_height]# 雨水宽度是 凹槽右侧的下标 - 凹槽左侧的下标 - 1w = i - stack[-1] - 1# 累计总雨水体积result += h * wstack.append(i)return result

84.柱状图中最大的矩形

力扣题目链接(opens new window)

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。
在这里插入图片描述

在这里插入图片描述
1 <= heights.length <=10^5
0 <= heights[i] <= 10^4

# 暴力解法(leetcode超时)
class Solution:def largestRectangleArea(self, heights: List[int]) -> int:# 从左向右遍历:以每一根柱子为主心骨(当前轮最高的参照物),迭代直到找到左侧和右侧各第一个矮一级的柱子res = 0for i in range(len(heights)):left = iright = i# 向左侧遍历:寻找第一个矮一级的柱子for _ in range(left, -1, -1):if heights[left] < heights[i]:breakleft -= 1# 向右侧遍历:寻找第一个矮一级的柱子for _ in range(right, len(heights)):if heights[right] < heights[i]:breakright += 1width = right - left - 1height = heights[i]res = max(res, width * height)return res# 双指针 
class Solution:def largestRectangleArea(self, heights: List[int]) -> int:size = len(heights)# 两个DP数列储存的均是下标indexmin_left_index = [0] * sizemin_right_index = [0] * sizeresult = 0# 记录每个柱子的左侧第一个矮一级的柱子的下标min_left_index[0] = -1  # 初始化防止while死循环for i in range(1, size):# 以当前柱子为主心骨,向左迭代寻找次级柱子temp = i - 1while temp >= 0 and heights[temp] >= heights[i]:# 当左侧的柱子持续较高时,尝试这个高柱子自己的次级柱子(DPtemp = min_left_index[temp]# 当找到左侧矮一级的目标柱子时min_left_index[i] = temp# 记录每个柱子的右侧第一个矮一级的柱子的下标min_right_index[size-1] = size  # 初始化防止while死循环for i in range(size-2, -1, -1):# 以当前柱子为主心骨,向右迭代寻找次级柱子temp = i + 1while temp < size and heights[temp] >= heights[i]:# 当右侧的柱子持续较高时,尝试这个高柱子自己的次级柱子(DPtemp = min_right_index[temp]# 当找到右侧矮一级的目标柱子时min_right_index[i] = tempfor i in range(size):area = heights[i] * (min_right_index[i] - min_left_index[i] - 1)result = max(area, result)return result# 单调栈
class Solution:def largestRectangleArea(self, heights: List[int]) -> int:# Monotonic Stack'''找每个柱子左右侧的第一个高度值小于该柱子的柱子单调栈:栈顶到栈底:从大到小(每插入一个新的小数值时,都要弹出先前的大数值)栈顶,栈顶的下一个元素,即将入栈的元素:这三个元素组成了最大面积的高度和宽度情况一:当前遍历的元素heights[i]大于栈顶元素的情况情况二:当前遍历的元素heights[i]等于栈顶元素的情况情况三:当前遍历的元素heights[i]小于栈顶元素的情况'''# 输入数组首尾各补上一个0(与42.接雨水不同的是,本题原首尾的两个柱子可以作为核心柱进行最大面积尝试heights.insert(0, 0)heights.append(0)stack = [0]result = 0for i in range(1, len(heights)):# 情况一if heights[i] > heights[stack[-1]]:stack.append(i)# 情况二elif heights[i] == heights[stack[-1]]:stack.pop()stack.append(i)# 情况三else:# 抛出所有较高的柱子while stack and heights[i] < heights[stack[-1]]:# 栈顶就是中间的柱子,主心骨mid_index = stack[-1]stack.pop()if stack:left_index = stack[-1]right_index = iwidth = right_index - left_index - 1height = heights[mid_index]result = max(result, width * height)stack.append(i)return result# 单调栈精简
class Solution:def largestRectangleArea(self, heights: List[int]) -> int:heights.insert(0, 0)heights.append(0)stack = [0]result = 0for i in range(1, len(heights)):while stack and heights[i] < heights[stack[-1]]:mid_height = heights[stack[-1]]stack.pop()if stack:# area = width * heightarea = (i - stack[-1] - 1) * mid_heightresult = max(area, result)stack.append(i)return result

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/263475.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux:gitlab创建组,创建用户,创建项目

创建组和项目 让后可以在组里创建一个个仓库 创建成员 我创建个成员再把他分配进这个组里 进入管理员 密码等会我们创建完用户再去配置密码 Regular是普通的用户&#xff0c;只可以正常去访问指定规则的项目 而下面的administrator就是管理员&#xff0c;可以随便进项目&…

8-pytorch-损失函数与反向传播

b站小土堆pytorch教程学习笔记 根据loss更新模型参数 1.计算实际输出与目标之间的差距 2.为我们更新输出提供一定的依据&#xff08;反向传播&#xff09; 1 MSEloss import torch from torch.nn import L1Loss from torch import nninputstorch.tensor([1,2,3],dtypetorch.fl…

数据仓库选型建议

1 数仓分层 1.1 数仓分层的意义 **数据复用&#xff0c;减少重复开发&#xff1a;**规范数据分层&#xff0c;开发一些通用的中间层数据&#xff0c;能够减少极大的重复计算。数据的逐层加工原则&#xff0c;下层包含了上层数据加工所需要的全量数据&#xff0c;这样的加工方…

黄仁勋最新专访:机器人基础模型可能即将出现,新一代GPU性能超乎想象

最近&#xff0c;《连线》的记者采访了英伟达CEO黄仁勋。 记者表示&#xff0c;与Jensen Huang交流应该带有警告标签&#xff0c;因为这位Nvidia首席执行官对人工智能的发展方向如此投入&#xff0c;以至于在经过近 90 分钟的热烈交谈后&#xff0c;我&#xff08;指代本采访的…

改进Yolov5目标检测与单目测距 yolo速度测量-pyqt界面-yolo添加注意力机制

当设计一个结合了 YOLOv5 目标检测、单目测距与速度测量以及 PyQt 界面的毕业设计时&#xff0c;需要考虑以下几个方面的具体细节&#xff1a; 计算机视觉、图像处理、毕业辅导、作业帮助、代码获取&#xff0c;私聊会回复! YOLOv5 目标检测&#xff1a; 首先&#xff0c;选择…

PostgreSQL 实体化视图的使用

上周的教程中&#xff0c;通过 DVD Rental Database 示例&#xff0c;让我们了解了在 PostgreSQL 中创建实体化视图的过程。正如我们所了解的&#xff0c;PostgreSQL 实体化视图提供了一种强大的机制&#xff0c;通过预计算和存储查询结果集为物理表来提高查询性能。接下来的内…

【爬虫逆向实战篇】定位加密参数、断点调试与JS代码分析

文章目录 1. 写在前面2. 确认加密参数3. 加密参数定位4. XHR断点调试 【作者主页】&#xff1a;吴秋霖 【作者介绍】&#xff1a;Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力于Python与爬虫领域研究与开发工作&#xff01; 【作者推荐】&#xff1a;对JS逆向…

实现外网手机或者电脑随时随地远程访问家里的电脑主机(linux为例)

文章目录 一、背景概要二、安装配置花生壳软件(linux版本)三、手机端(外网)验证连接四、安装ubuntu20server版系统遇到的问题记录 一、背景概要 由于经常在遇到某些问题的时候&#xff0c;针对某一个场景的理解&#xff0c;需要借助于自己的电脑去编译(aosp/linux/qemu)代码查…

Python中回调函数的理解与应用

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站零基础入门的AI学习网站~。 目录 前言 回调函数的概念 回调函数的基本用法 回调函数的实现方式 1 使用函数 2 使用类方法 3 使用类实…

1.QT简介(介绍、安装,项目创建等)

1. QT介绍 Qt&#xff08;官方发音 [kju:t]&#xff09;是一个跨平台的C开发库&#xff0c;主要用来开发图形用户界面&#xff08;Graphical User Interface&#xff0c;GUI&#xff09;程序 Qt 是纯 C 开发的&#xff0c;正常情况下需要先学习C语言、然后在学习C然后才能使用…

LaWGPT—基于中文法律知识的大模型

文章目录 LaWGPT&#xff1a;基于中文法律知识的大语言模型数据构建模型及训练步骤两个阶段二次训练流程指令精调步骤计算资源 项目结构模型部署及推理 LawGPT_zh&#xff1a;中文法律大模型&#xff08;獬豸&#xff09;数据构建知识问答模型推理训练步骤 LaWGPT&#xff1a;基…

【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture11 Advanced_CNN 实现GoogleNet和ResNet

【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture11 Advanced_CNN 代码&#xff1a; Pytorch实现GoogleNet import torch from torchvision import datasets, transforms from torch.utils.data import DataLoader import torch.nn as nn import torch.nn.fun…

matplotlib子图绘制

文章目录 子图组合网格布局GridSpec matplotlib教程&#xff1a; 初步 子图 从绘图流程出发&#xff0c;【plt】图像有三个层级&#xff0c;依次是窗口、坐标系以及图像。在一个坐标系中可以有多条曲线&#xff0c;即表示多个图像&#xff1b;相应地在一个窗口中&#xff0c;…

wcf 简单实践 数据绑定 数据更新ui

1.概要 2.代码 2.1 xaml <Window x:Class"WpfApp3.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expr…

一键生成PDF即刻呈现:轻松创建无忧体验

在信息爆炸的时代&#xff0c;我们每天都在与各种文件、资料打交道。无论是工作中的报告、合同&#xff0c;还是学习中的笔记、论文&#xff0c;如何高效、安全地管理这些珍贵的资料&#xff0c;成为了我们迫切的需求。幸运的是&#xff0c;随着科技的发展&#xff0c;我们不再…

java面向对象高级

一、静态 static读作静态&#xff0c;可以用来修饰成员变量&#xff0c;也能修饰成员方法。我们先来学习static修饰成员变量。 1.1 static修饰成员变量 Java中的成员变量按照有无static修饰分为两种&#xff1a;类变量、实例变量。它们的区别如下图所示&#xff1a; 由于静态…

目标跟踪之KCF详解

High-Speed Tracking with Kernelized Correlation Filters 使用内核化相关滤波器进行高速跟踪 大多数现代跟踪器的核心组件是判别分类器&#xff0c;其任务是区分目标和周围环境。为了应对自然图像变化&#xff0c;此分类器通常使用平移和缩放的样本补丁进行训练。此类样本集…

【AI链接】 大模型语言模型网站链接

目录 GPT类1. chatgpt2. GROP3. Google AI Studio4. Moonshot AI (国内) 解读论文类&#xff1a;1. txyz 编程辅助插件&#xff1a;1. Fitten Code GPT类 1. chatgpt https://chat.openai.com/ 2. GROP https://groq.com/ 3. Google AI Studio https://aistudio.google…

爬取m3u8视频

网址&#xff1a;https://www.bhlsm.com/cupfoxplay/609-3-1/ 相关代码&#xff1a; #采集网址&#xff1a;https://www.bhlsm.com/cupfoxplay/609-3-1/ #正常视频网站&#xff1a;完整视频内容 # pip install pycryptodomex #流媒体文件&#xff1a;M3U8&#xff08;把完整的…

在那静谧的冬天你飘落我荒凉心园

北风 - 刘蓝溪/梁弘志 --女--在那静谧的冬天你飘落我荒凉心园恰似北风一袭吹去秋意无限带来几片相思带来往日笑靥只见北风又起撒落枯叶片片--男--在那静谧的冬天你走进我冷漠心田恰似北风一袭吹去秋意无限北风婵媛白云白云本是轻烟只见北风又见带来白云片片--合--喔喔喔 海角…