基于虚拟力优化的无线传感器网络覆盖率matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

4.1 虚拟力优化算法

4.2 覆盖覆盖率计算

5.完整程序


1.程序功能描述

       基于虚拟力优化的无线传感器网络覆盖率,仿真输出优化前后的网络覆盖率,覆盖率优化收敛迭代曲线。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

........................................................................
for t=1:Iter1Fsvh = sqrt(Fsh^2+Fsv^2);if Fsvh==0Pxy(i,1)=Pxy(i,1)+0;Pxy(i,2)=Pxy(i,2)+0;elsePxy(i,1)=Pxy(i,1)+Fsh/Fsvh*step2*exp(-1/Fsvh);Pxy(i,2)=Pxy(i,2)+Fsv/Fsvh*step2*exp(-1/Fsvh);end%约束if Pxy(i,1)<XminPxy(i,1)=Xmin;endif Pxy(i,1)>XmaxPxy(i,1)=Xmax;endif Pxy(i,2)<YminPxy(i,2)=Ymin;endif Pxy(i,2)>YmaxPxy(i,2)=Ymax;endend% 重新计算覆盖率[Kidxs,summ,k1]=func_cover(Xk1,Yk1,Pxy,Radius);  Fgl(t) = summ/K;endfigure;
plot(Fgl)
xlabel('迭代次数');
ylabel('覆盖率收敛曲线');figure,
scales=[Xmin Ymin;Xmin Ymax;Xmax Ymax;Xmax Ymin];
fill(scales(:,1),scales(:,2),[0.8,0.8,0.8]);
hold on
plot(Pxy(:,1),Pxy(:,2),'r.','linewidth',5);
for i=1:Nodesx1=Pxy(i,1)+Radius*cos(w);y1=Pxy(i,2)+Radius*sin(w);hold onfill(x1,y1,'g')
end
axis([0 1000 0 900]);
xlabel('X/m');
ylabel('Y/m');
hold on
plot([Xmin Xmax],[Ymin Ymin],'k','linewidth',2);
hold on
plot([Xmin Xmin],[Ymin Ymax],'k','linewidth',2);
hold on
plot([Xmax Xmax],[Ymin Ymax],'k','linewidth',2);
hold on
plot([Xmin Xmax],[Ymax Ymax],'k','linewidth',2);
title(['优化后分布,覆盖率为:',num2str(Fgl(end))]);
30

4.本算法原理

       无线传感器网络(Wireless Sensor Networks, WSNs)由大量散布在特定区域的传感器节点组成,这些节点负责环境信息的采集和数据的无线传输。网络的覆盖率是衡量WSNs性能的关键指标之一,它反映了网络对监测区域的感知能力。为了提高覆盖率,研究者们提出了多种方法,其中基于虚拟力优化(Virtual Force-based Optimization)的方法因其直观性和有效性而备受关注。

4.1 虚拟力优化算法

        虚拟力优化算法是一种基于物理模型的优化算法。它通过模拟物理力学的作用,从而对待优化问题的解进行优化。其基本思想是将待优化问题的解表示为一组点的位置,然后引入一些虚拟力(如斥力、引力等),从而对点的位置进行优化。

        虚拟力优化算法包括以下几个步骤:

初始化点的位置:随机生成一组初始点的位置。

计算虚拟力:根据问题的特点,计算每个点的斥力和引力。

更新点的位置:根据虚拟力的作用,更新每个点的位置。

终止条件:达到预定的终止条件后,输出最优解。

计算虚拟力:根据问题的特点,计算每个点的斥力和引力。具体来说,可以采用以下几个虚拟力:

(1)斥力:用于避免传感器之间的重叠。斥力大小与传感器之间的距离成反比,距离越近,斥力越大。

(2)引力:用于吸引传感器到目标区域。引力大小与传感器与目标区域的距离成反比,距离越近,引力越大。

(3)墙壁斥力:用于避免传感器与墙壁的碰撞。墙壁斥力大小与传感器与墙壁的距离成反比,距离越近,斥力越大。

更新点的位置:根据虚拟力的作用,更新每个点的位置。具体来说,根据每个点所受到的虚拟力的大小和方向,计算每个点的加速度,然后根据加速度更新每个点的速度和位置。

重复步骤4和5,直到达到预定的终止条件。

4.2 覆盖覆盖率计算

      覆盖的计算,采用的是平面扫描法,对于两种传感器,一个圆形,一个正方形,那么对于每次优化得到的坐标,我们对整个平面区域进行扫描,计算每一个点是否处于某个或者多个传感器,如果满足这个条件,那么这个点计入到覆盖区域里面,然后扫描完所有点之后,统计一共多少个点呗扫描进去了,即覆盖率。

5.完整程序

VVV

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/264191.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Spring Cloud】高并发带来的问题及常见容错方案

文章目录 高并发带来的问题编写代码修改配置压力测试修改配置&#xff0c;并启动软件添加线程组配置线程并发数添加Http取样配置取样&#xff0c;并启动测试访问message方法观察效果 服务雪崩效应常见容错方案常见的容错思路常见的容错组件 总结 欢迎来到阿Q社区 https://bbs.c…

kafka生产者

1.原理 2.普通异步发送 引入pom&#xff1a; <dependencies><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>3.0.0</version></dependency><dependency><g…

【汽车电子】万字详解汽车标定与XCP协议

XCP协议基础 文章目录 XCP协议基础一、引言1.1 什么是标定1.2 什么时候进行标定1.3 标定的意义 二、XCP协议简介2.1 xcp简介2.2 XCP如何加快开发过程&#xff1f;2.3 XCP的主要作用 三、XCP工作过程3.1 工作过程3.2 通讯模型3.3 测量与标定 四、XCP报文解析4.1 数据包报文格式4…

恢复软件哪个好用?记好这3个文件恢复宝藏!

“现在市面上的恢复软件太多啦&#xff01;哪款恢复软件比较好用呢&#xff1f;大家可以给我推荐几个靠谱的恢复软件或者方法吗&#xff1f;感谢&#xff01;” 在日常使用电脑的过程中&#xff0c;文件丢失或删除是一个常见的问题&#xff0c;而恢复软件成为解决这一问题的得力…

Vue:基本命令的使用(代码 + 效果)

文章目录 Hello Vue!el: 挂载点datamethods vue命令v-textv-htmlv-on v-showv-ifv-bindv-forv-model Hello Vue! <!DOCTYPE html> <html><head><title>Hello Vue!</title></head><body><div id"app">{{ message }}…

C语言--贪吃蛇

目录 1. 实现目标2. 需掌握的技术3. Win32 API介绍控制台程序控制台屏幕上的坐标COORDGetStdHandleGetConsoleCursorinfoCONSOLE_CURSOR_INFOSetConsoleCursorInfoSetConsoleCursorPositionGetAsyncKeyState 4. 贪吃蛇游戏设计与分析地图<locale.h>本地化类项setlocale函…

【鸿蒙 HarmonyOS 4.0】TypeScript开发语言

一、背景 HarmonyOS 应用的主要开发语言是 ArkTS&#xff0c;它由 TypeScript&#xff08;简称TS&#xff09;扩展而来&#xff0c;在继承TypeScript语法的基础上进行了一系列优化&#xff0c;使开发者能够以更简洁、更自然的方式开发应用。值得注意的是&#xff0c;TypeScrip…

如何在Linux搭建MinIO服务并实现无公网ip远程访问内网管理界面

文章目录 前言1. Docker 部署MinIO2. 本地访问MinIO3. Linux安装Cpolar4. 配置MinIO公网地址5. 远程访问MinIO管理界面6. 固定MinIO公网地址 前言 MinIO是一个开源的对象存储服务器&#xff0c;可以在各种环境中运行&#xff0c;例如本地、Docker容器、Kubernetes集群等。它兼…

编码后的字符串lua

-- 长字符串 local long_string "你好你好你好你好你好你好你好你好" local encoded_string "" for i 1, #long_string do local char_code string.byte (long_string, i) encoded_string encoded_string .. char_code .. "," end encoded_…

LeetCode 1038.从二叉搜索树到更大和树

给定一个二叉搜索树 root (BST)&#xff0c;请将它的每个节点的值替换成树中大于或者等于该节点值的所有节点值之和。 提醒一下&#xff0c; 二叉搜索树 满足下列约束条件&#xff1a; 节点的左子树仅包含键 小于 节点键的节点。 节点的右子树仅包含键 大于 节点键的节点。 左…

Wagtail安装运行并结合内网穿透实现公网访问本地网站界面

文章目录 前言1. 安装并运行Wagtail1.1 创建并激活虚拟环境 2. 安装cpolar内网穿透工具3. 实现Wagtail公网访问4. 固定的Wagtail公网地址 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的 人工智能学习网站&#xff0c; 通俗易懂&#xff0c;风趣幽默&#xf…

好书推荐丨细说Python编程:从入门到科学计算

文章目录 写在前面Python简介推荐图书内容简介编辑推荐作者简介 推荐理由粉丝福利写在最后 写在前面 本期博主给大家推荐一本Python基础入门的全新正版书籍&#xff0c;对Python、机器学习、人工智能感兴趣的小伙伴们快来看看吧~ Python简介 Python 是一种广泛使用的高级、解…

Android platform tool中d8.bat不生效

d8.bat因找不到java_exe文件&#xff0c;触发EOF d8.bat中之前代码为&#xff1a; set java_exe if exist "%~dp0..\tools\lib\find_java.bat" call "%~dp0..\tools\lib\find_java.bat" if exist "%~dp0..\..\tools\lib\find_java.bat" …

深入探索 JS 的提升机制、函数与块作用域以及函数表达式和声明(下)

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

免费享受企业级安全:雷池社区版WAF,高效专业的Web安全的方案

网站安全成为了每个企业及个人不可忽视的重要议题。 随着网络攻击手段日益狡猾和复杂&#xff0c;选择一个强大的安全防护平台变得尤为关键。 推荐的雷池社区版——一个为网站提供全面安全防护解决方案的平台&#xff0c;它不仅具备高效的安全防护能力&#xff0c;还让网站安…

vue2实现无感刷新token

&#x1f3ac; 江城开朗的豌豆&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 &#x1f4dd; 个人网站 :《 江城开朗的豌豆&#x1fadb; 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! 目录 &#x1f4d8; 引言&#xff1a; &#x1f4…

【蓝桥杯】拓扑排序

一.拓扑排序 1.定义&#xff1a; 设G&#xff08;V&#xff0c;E&#xff09;是一个具有n个顶点的有向图&#xff0c;V中的顶点序列称为一个拓扑序列&#xff0c;当且仅当满足下列条件&#xff1a;若从顶点到有一条路径&#xff0c;则在顶点序列中顶点必在之前。 2.基本思想…

GO数组解密:从基础到高阶全解

在本文中&#xff0c;我们深入探讨了Go语言中数组的各个方面。从基础概念、常规操作&#xff0c;到高级技巧和特殊操作&#xff0c;我们通过清晰的解释和具体的Go代码示例为读者提供了全面的指南。无论您是初学者还是经验丰富的开发者&#xff0c;这篇文章都将助您更深入地理解…

MedicalGPT 训练医疗大模型,实现了包括增量预训练、有监督微调、RLHF(奖励建模、强化学习训练)和DPO(直接偏好优化)

MedicalGPT 训练医疗大模型&#xff0c;实现了包括增量预训练、有监督微调、RLHF(奖励建模、强化学习训练)和DPO(直接偏好优化)。 MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training Pipeline. 训练医疗大模型&#xff0c;实现了包括增量预训练、有监督微…

软硬协同设计下的飞天盘古,是如何降低存储系统开销的?

云布道师 经过十几年的技术演进&#xff0c;阿里巴巴已经实现了统一存储的目标——即以“飞天盘古”系统作为统一底座&#xff0c;通过标准化、服务化和开放化的方式建立了完整的存储产品和服务体系&#xff0c;服务广大内部和外部客户。 “万古乾坤心上辟&#xff0c;于令日…