解析Hadoop三大核心组件:HDFS、MapReduce和YARN

目录

  • Hadoop
    • Hadoop的优势
  • Hadoop的组成
    • HDFS架构设计
    • Yarn架构设计
    • MapReduce架构设计
  • 总结

在大数据时代,Hadoop作为一种开源的分布式计算框架,已经成为处理大规模数据的首选工具。它采用了分布式存储和计算的方式,能够高效地处理海量数据。Hadoop的核心由三大组件组成:HDFS、MapReduce和YARN。本文将为您逐一介绍这三个组件。

Hadoop

Hadoop是一个开源的分布式计算和存储框架,主要解决海量数据的存储和海量数据的分析计算。

Hadoop的优势

  1. 高可扩展性:Hadoop可以轻松地扩展到大规模集群,并处理大量的数据。它采用分布式计算的方式,将工作负载分布在集群中的多个节点上,使得系统能够处理海量的数据和高并发请求。

  2. 高容错性:Hadoop具有高度的容错能力,即使在设备或任务发生故障的情况下,也能保持数据的完整性和系统的可用性。它通过数据的冗余复制和自动故障转移等机制,确保数据的安全和系统的稳定性。

  3. 高效性:通过并行处理和分布式计算,Hadoop能够实现快速的数据处理。它可以将大规模的数据分解为小的任务并在多个节点上并行执行,从而提高处理效率和速度。

  4. 处理多种数据类型:Hadoop可以处理各种类型的数据,包括结构化数据、半结构化数据和非结构化数据。它能够灵活地存储和处理数据,支持分布式存储和处理大规模的文本、图像、音频、视频等数据类型。

  5. 异构性:Hadoop支持不同类型的硬件和操作系统,并且能够与其他开源工具和框架无缝集成。它提供了统一的接口和API,使得用户可以用各种编程语言编写应用程序,并在Hadoop上运行。

  6. 成本效益:相比于传统的数据存储和处理方式,Hadoop具有较低的成本。它使用商业化的廉价硬件,可以通过纵向和横向扩展实现高性能和高可用性,降低了硬件和软件成本。


Hadoop的组成

HDFS架构设计

Hadoop分布式文件系统(Hadoop Distributed File System,HDFS)是Hadoop生态系统中的一个重要组成部分,是用于存储和处理大数据的分布式文件系统。

HDFS采用master/slave架构。一个HDFS集群是由一个Namenode和一定数目的Datanodes组成。Namenode是一个中心服务器,负责管理文件系统的名字空间(namespace)以及客户端对文件的访问。集群中的Datanode一般是一个节点一个,负责管理它所在节点上的存储。HDFS暴露了文件系统的名字空间,用户能够以文件的形式在上面存储数据。从内部看,一个文件其实被分成一个或多个数据块,这些块存储在一组Datanode上。Namenode执行文件系统的名字空间操作,比如打开、关闭、重命名文件或目录。它也负责确定数据块到具体Datanode节点的映射。Datanode负责处理文件系统客户端的读写请求。在Namenode的统一调度下进行数据块的创建、删除和复制。

在这里插入图片描述
其架构详细概述如下:

  1. NameNode(nn):
    NameNode是HDFS的主节点,负责管理整个文件系统的命名空间和数据块的元数据信息。它维护文件系统的目录结构、文件的安全权限信息和数据块的位置信息等。NameNode还处理客户端的文件系统操作请求,如文件的读写和块的创建、复制和删除等。

  2. DataNode(dn):
    DataNode是HDFS的工作节点,负责实际存储文件数据和执行文件系统操作的任务。每个DataNode负责管理一定数量的数据块,并定期向NameNode报告数据块的存储信息。DataNode还处理来自客户端和其他DataNode的读取和写入请求,以及数据块的复制和恢复等。

  3. 存储指定副本:
    HDFS中的文件被分成一系列的数据块,这些数据块会被复制到不同的Datanode上。根据副本配置参数,每个数据块在HDFS中会有多个副本,这样可以提高数据的可靠性和容错性。HDFS会尽量将这些副本存储在不同的机架、节点和硬盘上,以防止硬件故障或网络故障导致的数据丢失。

  4. 客户端(Client):
    客户端是使用HDFS的应用程序。它们通过与Namenode和Datanode进行通信来读取和写入文件。客户端向Namenode请求文件的元数据信息,根据元数据信息确定所需数据块的位置,并从Datanode获取数据。客户端还负责处理文件系统的操作,如创建、删除、重命名和移动文件等。


Yarn架构设计

YARN(Yet Another Resource Negotiator)的基本思想是将资源管理和作业调度/监视的功能拆分为单独的守护进程。这个想法是有一个全局的ResourceManager (RM)和每个应用的ApplicationMaster (AM)。应用程序可以是单个作业,也可以是作业DAG。它的架构设计如下:

在这里插入图片描述

  1. ResourceManager(资源管理器):
    ResourceManager是YARN集群的主节点,负责整个集群的资源管理和任务调度。它接收来自客户端、应用程序和NodeManager的资源请求,分配和调度集群中的资源。ResourceManager还负责监控集群的健康状态,处理故障和任务的重新分配,以确保高可用性和稳定性。

  2. NodeManager(节点管理器):
    NodeManager是YARN集群中每个节点上的组件,负责管理和监控该节点上的计算资源。NodeManager通过向ResourceManager注册自己的资源和容器信息,将自身纳入到集群的资源管理中。它负责启动和监控容器,接收来自ResourceManager的资源分配指令,并向ResourceManager报告计算资源的使用情况。

  3. ApplicationMaster(应用程序管理器):
    每个在YARN上运行的应用程序都会有一个ApplicationMaster。ApplicationMaster负责协调和管理应用程序的资源需求,与ResourceManager通信并向其申请资源。它还监控应用程序的运行状态和容器的健康度,并处理容器的启动、停止和失败等情况。ApplicationMaster执行应用程序的逻辑,将整个应用程序划分为一系列的任务,并与NodeManager通信来启动和管理任务的执行。

  4. Container(容器):
    在YARN中,任务被封装到一个个容器中。容器是对计算资源的抽象,它由ResourceManager分配给ApplicationMaster,并由ApplicationMaster分配给具体的任务执行。每个容器拥有自己的计算和存储资源,并在NodeManager上创建和运行任务相关的进程。容器提供了高度的隔离性和资源限制,确保应用程序之间不会相互干扰。


ResourceManager有两个主要组件:Scheduler和ApplicationsManager。

Scheduler负责将资源分配给各种正在运行的应用程序,这些应用程序受到熟悉的容量、队列等约束。Scheduler是纯粹的Scheduler,因为它不监视或跟踪应用程序的状态。此外,它不能保证重新启动由于应用程序故障或硬件故障而失败的任务。调度程序根据应用程序的资源需求执行调度功能;它是基于资源容器的抽象概念来实现的,资源容器包含了诸如内存、cpu、磁盘、网络等元素。

ApplicationsManager 负责接受作业提交、协商第一个容器来执行应用程序特定的 ApplicationMaster 并提供在失败时重新启动 ApplicationMaster 容器的服务。每个应用程序的 ApplicationMaster 负责与 Scheduler 协商适当的资源容器,跟踪其状态并监控进度。


MapReduce架构设计

MapReduce是一种分布式计算编程模型,用于处理大规模数据集。它的架构设计包括以下几个组件:

  1. JobTracker(作业调度器):
    JobTracker是MapReduce作业的主节点,负责整个作业的调度和执行。它接收来自客户端的作业请求,将作业划分为多个任务,并分配给各个TaskTracker进行执行。JobTracker还负责监控任务的进度和状态,处理任务的失败和重新分配,以确保作业的顺利运行。

  2. TaskTracker(任务执行器):
    TaskTracker是在每个集群节点上运行的组件,负责执行作业中的任务。它接收来自JobTracker的任务分配指令,并在该节点上启动和管理任务的执行。TaskTracker将任务划分为Map任务和Reduce任务,并负责处理任务的输入输出数据,以及任务的进度和状态更新。

  3. MapTask(映射任务):
    MapTask是MapReduce作业的计算阶段。每个MapTask从输入数据中抽取一部分数据,经过映射函数的处理后生成键值对(key-value pair)。MapTask独立进行执行,处理输入数据的分片,将处理后的中间结果写入本地磁盘。

  4. ReduceTask(归约任务):
    ReduceTask是MapReduce作业的归约阶段。每个ReduceTask接收来自Mapper的输出结果,并按照键进行归约操作,将具有相同键的数据进行合并和计算生成最终结果。ReduceTask也独立执行,将归约后的结果写入最终输出文件。

  5. 分布式文件系统:
    MapReduce框架通常与分布式文件系统(如HDFS)结合使用,用于存储输入数据和输出结果。分布式文件系统提供了高可靠性和容错性,并支持数据的高并发访问。

通过这种架构设计,MapReduce就可以实现任务的分布式执行和并行计算,并能够高效处理大规模数据集。
Map阶段将计算任务分布到不同的节点上进行并行处理,Reduce阶段将中间结果进行合并和计算生成最终结果。这种框架设计适用于各种数据处理场景,如数据排序、数据过滤、数据聚合等。同时,MapReduce框架也提供了一些其他功能,如容错性、动态负载均衡和数据本地化等,以提高作业的执行效率和数据处理速度。


总结

Hadoop的三大核心组件HDFS、MapReduce和YARN共同构成了一个完整的分布式计算框架。HDFS提供了高可靠性的分布式文件存储,MapReduce实现了高效的并行计算,而YARN则管理着集群的资源和任务。通过这三个组件的配合,Hadoop能够处理大规模数据集的存储、计算和调度,为大数据处理提供了强大的支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/264439.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于51单片机的智能监护与健康检测[proteus仿真]

基于51单片机的自行车测速系统设计[proteus仿真] 个人健康检测系统这个题目算是课程设计和毕业设计中常见的题目了,本期是一个基于51单片机的智能监护与健康检测 需要的源文件和程序的小伙伴可以关注公众号【阿目分享嵌入式】,赞赏任意文章 2&#xff…

Liunx--nginx负载均衡--前后端分离项目部署

一.nginx简介 Nginx是一个高性能的HTTP和反向代理服务器,它以其轻量级、占用资源少、并发能力强而广受欢迎。 详细介绍 开发背景与特点:Nginx由俄罗斯人Igor Sysoev开发,它是一个自由的、开源的软件。Nginx设计上注重性能和效率,能…

图像读取裁剪与人脸识别

图像读取 Image read ⇒ \Rightarrow ⇒ torchvision.datasets from torchvision import datasets dataset datasets.ImageFolder(data_dir, transformtransforms.Resize((512, 512)))Return value illustration dataset[0][0]是PIL.Image objects,这利用IPyth…

音视频技术-电脑连接调音台时交流声的产生与消除

当电脑(笔记本/台式机)声卡通过音频线与调音台(或扩音机)连接时,能听到“交流声”。有时很轻微,有时很明显,甚至干扰正常的演讲或发言。 很多时候,我们在台上演讲时,都会…

Easy-Jmeter: 性能测试平台

目录 写在开始1 系统架构2 表结构设计3 测试平台生命周期4 分布式压测5 压力机管理6 用例管理6.1 新增、编辑用例6.2 调试用例6.3 启动测试6.4 动态控量6.5 测试详情6.6 环节日志6.7 实时数据6.8 测试结果 7 测试记录7 用例分析8 系统部署8.1普通部署8.2容器化部署 写在最后 写…

嵌入式C语言(三)

typeof() 使用typeof可以获取一个变量或表达式的类型。 typeof的参数有两种形式:表达式或类型。 int i;typeof(i) j 20; --> int j 20;typeof(int *) a; -->int *a; int f(); -->typeof(f()) k;--? int k我们可以看出通过typeof获取一个变量的…

前后端分离Vue+node.js在线学习考试系统gqw7o

与其它应用程序相比,在线学习平台的设计主要面向于学校,旨在为管理员和学生、教师、院系提供一个在线学习平台。学生、教师、院系可以通过系统及时查看公告信息等。 在线学习平台是在Windows操作系统下的应用平台。为防止出现兼容性及稳定性问题&#xf…

使用 Verilog 做一个可编程数字延迟定时器 LS7211-7212

今天的项目是在 Verilog HDL 中实现可编程数字延迟定时器。完整呈现了延迟定时器的 Verilog 代码。 所实现的数字延迟定时器是 CMOS IC LS7212,用于生成可编程延迟。延迟定时器的规格可以在这里轻松找到。基本上,延迟定时器有 4 种操作模式:…

用c# 自己封装的Modbus工具类库源码

前言 Modbus通讯协议在工控行业的应用是很多的,并且也是上位机开发的基本技能之一。相关的类库也很多也很好用。以前只负责用,对其并没有深入学习和了解。前段时间有点空就在这块挖了挖。想做到知其然还要知其所以然。所以就有了自己封装的Modbus工具类库…

Leetcode3014. 输入单词需要的最少按键次数 I

题目&#xff1a; 代码(首刷看解析 2024年2月21日&#xff09;&#xff1a; class Solution { public:int minimumPushes(string word) {int n word.size();if (n < 8) return n;int mo n % 8;int x n / 8;int res 0;for (int i 1; i < x 1; i) {res i * 8;}res …

leet hot 100-6 三数之和

三数之和 原题链接思路代码 原题链接 leet hot 100-5 15. 三数之和 思路 从前往后定义第一个数字 first 开始遍历整个数组 然后要求 frist和上一个数字不重复否则就是重复组合 从frist往后遍历第二个数字 同样要求第二个数字不能重复 再定义第三个数字从后往前面数 三个数字…

iOS面试:4.多线程GCD

一、多线程基础知识 1.1 什么是进程&#xff1f; 进程是指在系统中正在运行的一个应用程序。对于电脑而已&#xff0c;你打开一个软件&#xff0c;就相当于开启了一个进程。对于手机而已&#xff0c;你打开了一个APP&#xff0c;就相当于开启了一个进程。 1.2 什么是线程&am…

http协议基础与Apache的简单介绍

一、相关介绍&#xff1a; 互联网&#xff1a;是网络的网络&#xff0c;是所有类型网络的母集因特网&#xff1a;世界上最大的互联网网络。即因特网概念从属于互联网概念。习惯上&#xff0c;大家把连接在因特网上的计算机都成为主机。万维网&#xff1a;WWW&#xff08;world…

二叉树和堆

二叉树和堆 一、树的概念和结构二、二叉树的概念三、堆四、堆的创建one、堆的插入(需要与向上或者向下调整算法配合(取决于你建大堆还是小堆)two、剔除堆中的根节点 五、堆的简单排序 一、树的概念和结构 树是一种非线性的的数据结构&#xff0c;逻辑结构就是一颗倒挂的树&…

Linux使用Docker部署Nacos容器并结合内网穿透实现公网访问本地服务

文章目录 推荐1. Docker 运行Nacos2. 本地访问Nacos3. Linux安装Cpolar4. 配置Nacos UI界面公网地址5. 远程访问 Nacos UI界面6. 固定Nacos UI界面公网地址7. 固定地址访问Plik 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff…

精美的WordPress外贸独立站模板

WordPress外贸独立站主题 简洁实用的WordPress外贸独立站主题&#xff0c;适合时尚服装行业搭建wordpress企业官网使用。 https://www.jianzhanpress.com/?p4999 简洁wordpress独立站模板 绿色精美、简洁大气的wordpress外贸独立网站模板 https://www.jianzhanpress.com/?…

本地配置多个git账户及ll设置

本地配置多个git账户 清除全局配置将命令行&#xff0c;切换到ssh目录生成GitLab和Gitee的公钥、私钥去对应的代码仓库添加 SSH Keys添加私钥ll设置 管理密钥验证仓库配置关于gitgitee.com: Permission denied (publickey) 清除全局配置 此步骤可以不做&#xff0c;经测试不影…

微信小程序本地开发

微信小程序本地开发时不需要在小程序后台配置服务器域名直接在小程序项目中填写后端在本机的IP地址和端口号 如图&#xff08;第一步&#xff09; 填写地址后发现报错&#xff0c;url不是合法域名&#xff0c;则在详情设置不校验合法域名 如图&#xff08;第二歩&#xff09;…

AI:134-基于深度学习的社交媒体图像内容分析

🚀点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~ 🎉🎊🎉 你的技术旅程将在这里启航! 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的关键代码,详细讲解供…

猫头虎分享已解决Bug || AttributeError: ‘Sequential‘ object has no attribute ‘session‘

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …