二叉树与堆

目录

1.树概念及结构

1.1树的概念

1.2 树的相关概念

1.3 树的表示

1.4 树在实际中的运用(表示文件系统的目录树结构)

2.二叉树概念及结构

2.1概念

2.2现实中的二叉树:

2.3 特殊的二叉树:

2.4 二叉树的性质

2.5 二叉树的存储结构

3.二叉树的顺序结构及实现

3.1 二叉树的顺序结构

3.2 堆的概念及结构

3.3 堆的实现

3.2.1 堆向下调整算法

3.2.2堆的创建

3.2.3 建堆时间复杂度

3.2.4 堆的插入

3.2.5 堆的删除

3.2.6 堆的代码实现

3.4 堆的应用

3.4.1 堆排序

3.4.2 TOP-K问题

4.二叉树链式结构的实现

4.1 前置说明

4.2二叉树的遍历

4.2.1 前序、中序以及后序遍历

4.2.2 层序遍历

4.3 节点个数以及高度等

4.5 二叉树的创建和销毁



1.树概念及结构

1.1树的概念
 

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
有一个特殊的结点,称为根结点,根节点没有前驱结点
除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继

因此,树是递归定义的。



 


注意:树形结构中,子树之间不能有交集,否则就不是树形结构


1.2 树的相关概念
 

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6


叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点


非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点


双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点


孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点


兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6


节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4


堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点


节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先


子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙


森林:由m(m>0)棵互不相交的树的集合称为森林
 


1.3 树的表示
 

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
 

typedef int DataType;
struct Node
{
        struct Node* _firstChild1; // 第一个孩子结点
        struct Node* _pNextBrother; // 指向其下一个兄弟结点
        DataType _data; // 结点中的数据域
};


1.4 树在实际中的运用(表示文件系统的目录树结构)
 


2.二叉树概念及结构
 

2.1概念

一棵二叉树是结点的一个有限集合,该集合:
        1. 或者为空
        2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图可以看出:

        1. 二叉树不存在度大于2的结点
        2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
        注意:对于任意的二叉树都是由以下几种情况复合而成的:


2.2现实中的二叉树:


2.3 特殊的二叉树:
 

        1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉  树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。


        2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树


2.4 二叉树的性质
 

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 个结点.


2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 .


3. 对任何一棵二叉树, 如果度为0其叶结点个数为 , 度为2的分支结点个数为 ,则有 = +1


4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= . (ps: 是log以2
为底,n+1为对数)


5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

        1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
        2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
        3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子


2.5 二叉树的存储结构
 

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
 

1. 顺序存储


        顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2. 链式存储


        二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,如红黑树等会用到三叉链。

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
        struct BinTreeNode* _pLeft; // 指向当前节点左孩子
        struct BinTreeNode* _pRight; // 指向当前节点右孩子
        BTDataType _data; // 当前节点值域
}


// 三叉链
struct BinaryTreeNode
{
        struct BinTreeNode* _pParent; // 指向当前节点的双亲
        struct BinTreeNode* _pLeft; // 指向当前节点左孩子
        struct BinTreeNode* _pRight; // 指向当前节点右孩子
        BTDataType _data; // 当前节点值域
};


3.二叉树的顺序结构及实现
 

3.1 二叉树的顺序结构
 

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。


3.2 堆的概念及结构
 


3.3 堆的实现
 

3.2.1 堆向下调整算法

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

int array[] = {27,15,19,18,28,34,65,49,25,37};


3.2.2堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

int a[] = {1,5,3,8,7,6};


3.2.3 建堆时间复杂度
 

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

因此:建堆的时间复杂度为O(N)。


3.2.4 堆的插入

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。



3.2.5 堆的删除
 

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。


3.2.6 堆的代码实现
 

typedef int HPDataType;
typedef struct Heap
{
        HPDataType* _a;
        int _size;
        int _capacity;
}Heap;


// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n);


// 堆的销毁
void HeapDestory(Heap* hp);


// 堆的插入
void HeapPush(Heap* hp, HPDataType x);


// 堆的删除
void HeapPop(Heap* hp);


// 取堆顶的数据
HPDataType HeapTop(Heap* hp);


// 堆的数据个数
int HeapSize(Heap* hp);


// 堆的判空
int HeapEmpty(Heap* hp);


3.4 堆的应用
 

3.4.1 堆排序
 

堆排序即利用堆的思想来进行排序,总共分为两个步骤:


1. 建堆
        升序:建大堆
        降序:建小堆


2. 利用堆删除思想来进行排序
        建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序


3.4.2 TOP-K问题


TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
        比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
        对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排  序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,

基本思路如下:


1. 用数据集合中前K个元素来建堆
        前k个最大的元素,则建小堆
        前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
 

void PrintTopK(int* a, int n, int k)
{
        // 1. 建堆--用a中前k个元素建堆
        // 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换
}
void TestTopk()
{
        int n = 10000;
        int* a = (int*)malloc(sizeof(int)*n);
        srand(time(0));
for (size_t i = 0; i < n; ++i)
{
        a[i] = rand() % 1000000;
}
        a[5] = 1000000 + 1;
        a[1231] = 1000000 + 2;
        a[531] = 1000000 + 3;
        a[5121] = 1000000 + 4;
        a[115] = 1000000 + 5;
        a[2335] = 1000000 + 6;
        a[9999] = 1000000 + 7;
        a[76] = 1000000 + 8;
        a[423] = 1000000 + 9;
        a[3144] = 1000000 + 10;
        PrintTopK(a, n, 10);
}


4.二叉树链式结构的实现
 

4.1 前置说明
 

在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研究二叉树真正的创建方式。

typedef int BTDataType;
typedef struct BinaryTreeNode
{
        BTDataType _data;
        struct BinaryTreeNode* _left;
        struct BinaryTreeNode* _right;
}BTNode;


BTNode* CreatBinaryTree()
{
        BTNode* node1 = BuyNode(1);
        BTNode* node2 = BuyNode(2);
        BTNode* node3 = BuyNode(3);

        BTNode* node4 = BuyNode(4);
        BTNode* node5 = BuyNode(5);
        BTNode* node6 = BuyNode(6);


        node1->_left = node2;
        node1->_right = node4;
        node2->_left = node3;
        node4->_left = node5;
        node4->_right = node6;
        return node1;
}

注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。


再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:


        1. 空树
        2. 非空:根节点,根节点的左子树、根节点的右子树组成的

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。
 


4.2二叉树的遍历
 

4.2.1 前序、中序以及后序遍历
 

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:


1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。


2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。


3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
 

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

// 二叉树前序遍历
void PreOrder(BTNode* root);
// 二叉树中序遍历
void InOrder(BTNode* root);
// 二叉树后序遍历
void PostOrder(BTNode* root);

下面主要分析前序递归遍历,中序与后序图解类似,同学们可自己动手绘制。


前序遍历递归图解:
 

前序遍历结果:1 2 3 4 5 6
中序遍历结果:3 2 1 5 4 6
后序遍历结果:3 2 5 6 4 1


4.2.2 层序遍历
 

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

// 层序遍历
void LevelOrder(BTNode* root);


4.3 节点个数以及高度等
 

// 二叉树节点个数
int BinaryTreeSize(BTNode* root);


// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root);


// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k);


// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);


4.5 二叉树的创建和销毁
 

// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi);


// 二叉树销毁
void BinaryTreeDestory(BTNode** root);


// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root);
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/264818.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高性能 Kafka 及常见面试题

Kafka 是一种分布式的&#xff0c;基于发布/订阅的消息系统&#xff0c;原本开发自 LinkedIn&#xff0c;用作 LinkedIn 的事件流&#xff08;Event Stream&#xff09;和运营数据处理管道&#xff08;Pipeline&#xff09;的基础。 基础原理详解可见 Kafka 基本架构及原理 基础…

【大数据】Flink SQL 语法篇(四):Group 聚合、Over 聚合

Flink SQL 语法篇&#xff08;四&#xff09;&#xff1a;Group 聚合、Over 聚合 1.Group 聚合1.1 基础概念1.2 窗口聚合和 Group 聚合1.3 SQL 语义1.4 Group 聚合支持 Grouping sets、Rollup、Cube 2.Over 聚合2.1 时间区间聚合2.2 行数聚合 1.Group 聚合 1.1 基础概念 Grou…

019 Spring Boot+Vue 电影院会员管理系统(源代码+数据库+文档)

部分代码地址&#xff1a; https://github.com/XinChennn/xc019-cinema 一、系统介绍 cinema项目是一套电影院会员管理系统&#xff0c;使用前后端分离架构开发包含管理员、会员管理、会员卡管理、电影票、消费记录、数据统计等模块 二、所用技术 后端技术栈&#xff1a; …

【Flink精讲】Flink组件通信

主要指三个进程中的通讯 CliFrontendYarnJobClusterEntrypointTaskExecutorRunner Flink内部节点之间的通讯使用Akka&#xff0c;比如JobManager和TaskManager之间。而operator之间的数据传输是利用Netty。 RPC是统称&#xff0c;Akka&#xff0c;Netty是实现 Akka与Ac…

热闹元宵进行中,如何利用VR全景展示民宿品牌形象?

错峰出游闹元宵&#xff0c;元宵节恰逢周末&#xff0c;而且还是春节假期返工之后的首个休息日&#xff0c;不少人都想通过短途度假来缓解“节后综合征”。两位数的特价机票、打折的各种酒店让你实现“旅行自由”&#xff0c;那么如何知道特价酒店服务好不好呢&#xff1f;先别…

Docker Volume

"Ice in my vein" Docker Volume(存储卷) 什么是存储卷? 存储卷就是: “将宿主机的本地文件系统中存在的某个目录&#xff0c;与容器内部的文件系统上的某一目录建立绑定关系”。 存储卷与容器本身的联合文件系统&#xff1f; 在宿主机上的这个与容器形成绑定关系…

实用区块链应用:去中心化投票系统的部署与实施

一、需求分析背景 随着技术的发展&#xff0c;传统的投票系统面临着越来越多的挑战&#xff0c;如中心化控制、透明度不足和易受攻击等问题。为了解决这些问题&#xff0c;我们可以利用区块链技术去中心化、透明性和安全性来构建一个去中心化投票系统。这样的系统能够确保投票过…

vue2.0及起步(前端面试知识积累)

1、需要了解的vue概要知识 1、vue是什么&#xff1f; 一套用于构建用户界面的渐进式JavaScript框架。 为什么vue被称为是渐进式JS框架&#xff1f; 答&#xff1a;Vue允许开发者在不同的项目中以渐进式的方式使用它&#xff0c;这种渐进式表现在以下的方面&#xff1a; 逐步采…

数据可视化--了解数据可视化和Excel数据可视化

目录 1.1科学可视化&#xff1a; 可视化是模式、关系、异常 1.2三基色原理&#xff1a; 三基色:红色、绿色和蓝色 1.3Excel数据可视化 1.3.1 excel数据分析-13个图表可视化技巧 1.3.2 excel数据分析-28个常用可视化图表&#xff08;video&#xff09; 1.3.3Excel可视化…

Java面试——锁

​ 公平锁&#xff1a; 是指多个线程按照申请锁的顺序来获取锁&#xff0c;有点先来后到的意思。在并发环境中&#xff0c;每个线程在获取锁时会先查看此锁维护的队列&#xff0c;如果为空&#xff0c;或者当前线程是等待队列的第一个&#xff0c;就占有锁&#xff0c;否则就会…

Apache Doris 发展历程、技术特性及云原生时代的未来规划

本文节选自《基础软件之路&#xff1a;企业级实践及开源之路》一书&#xff0c;该书集结了中国几乎所有主流基础软件企业的实践案例&#xff0c;由 28 位知名专家共同编写&#xff0c;系统剖析了基础软件发展趋势、四大基础软件&#xff08;数据库、操作系统、编程语言与中间件…

js里面有引用传递吗?

一&#xff1a;什么是引用传递 引用传递是相对于值传递的。那什么是值传递呢&#xff1f;值传递就是在传递过程中再复制一份&#xff0c;然后再赋值给变量&#xff0c;例如&#xff1a; let a 2; let b a;在这个代码中&#xff0c;let b a; 就是一个值传递&#xff0c;首先…

深度学习手写字符识别:推理过程

说明 本篇博客主要是跟着B站中国计量大学杨老师的视频实战深度学习手写字符识别。 第一个深度学习实例手写字符识别 深度学习环境配置 可以参考下篇博客&#xff0c;网上也有很多教程&#xff0c;很容易搭建好深度学习的环境。 Windows11搭建GPU版本PyTorch环境详细过程 数…

设计模式(十) - 工厂方式模式

前言 在此前的设计模式&#xff08;四&#xff09;简单工厂模式中我们介绍了简单工厂模式&#xff0c;在这篇文章中我们来介绍下工厂方法模式&#xff0c;它同样是创建型设计模式&#xff0c;而且又有些类似&#xff0c;文章的末尾会介绍他们之间的不同。 1.工厂方法模式简介 …

小程序性能优化

背景 在开发小程序的过程中我们发现&#xff0c;小程序的经常会遇到性能问题&#xff0c;尤其是在微信开发者工具的时候更是格外的卡&#xff0c;经过排查发现&#xff0c;卡顿的页面有这么多的js代码需要加载&#xff0c;而且都是在进入这个页面的时候加载&#xff0c;这就会…

面试redis篇-10Redis集群方案-主从复制

在Redis中提供的集群方案总共有三种: 主从复制哨兵模式分片集群主从复制 单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。 主从数据同步原理 Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每…

React18源码: Fiber树的初次创建过程图文详解

fiber树构造&#xff08;初次创建&#xff09; fiber树构造的2种情况&#xff1a; 1.初次创建 在React应用首次启动时&#xff0c;界面还没有渲染此时并不会进入对比过程&#xff0c;相当于直接构造一棵全新的树 2.对比更新 React应用启动后&#xff0c;界面已经渲染如果再次发…

软考45-上午题-【数据库】-数据操纵语言DML

一、INSERT插入语句 向SQL的基本表中插入数据有两种方式&#xff1a; ①直接插入元组值 ②插入一个查询的结果值 1-1、直接插入元组值 【注意】&#xff1a; 列名序列是可选的&#xff0c;若是所有列都要插入数值&#xff0c;则可以不写列名序列。 示例&#xff1a; 1-2、插…

跟着cherno手搓游戏引擎【26】Profile和Profile网页可视化

封装Profile&#xff1a; Sandbox2D.h:ProfileResult结构体和ProfileResult容器&#xff0c;存储相应的信息 #pragma once #include "YOTO.h" class Sandbox2D :public YOTO::Layer {public:Sandbox2D();virtual ~Sandbox2D() default;virtual void OnAttach()ove…

微信小程序的医院体检预约管理系统springboot+uniapp+python

本系统设计的目的是建立一个简化信息管理工作、便于操作的体检导引平台。共有以下四个模块&#xff1a; uni-app框架&#xff1a;使用Vue.js开发跨平台应用的前端框架&#xff0c;编写一套代码&#xff0c;可编译到Android、小程序等平台。 语言&#xff1a;pythonjavanode.js…