“目标检测”任务基础认识

“目标检测”任务基础认识

1.目标检测初识

目标检测任务关注的是图片中特定目标物体位置

目标检测最终目的:检测在一个窗口中是否有物体

eg:以猫脸检测举例,当给出一张图片时,我们需要框出猫脸的位置并给出猫脸的大小,如下图所示。

2.一个检测任务包含两个子任务

  • 一个是分类任务:输出这一目标的类别信息(分类标签);
  • 另一个是定位任务:输出目标的具体位置信息(用矩形框表示,包含矩形框左上角或中间位置的x、y坐标和矩形框的宽度与高度)。

3.算法发展历程

与计算机视觉领域里大部分的算法一样,目标检测也经历了从传统的人工设计特征加浅层分类器的方案,到基于深度学习的端到端学习方案的演变。而在深度学习中,很多任务都是采用**端到端(end-to-end)**的方案,即输入一张图,输出最终想要的结果算法细节和学习过程全部交给神经网络,这一点在目标检测领域体现得非常明显。

4.目标检测步骤

不管是用清晰的分步骤处理还是用深度学习的end-to-end方法完成一个目标检测任务,一个系统一定会遵循3个步骤
在这里插入图片描述
如图5.1所示。

  1. 第一步选择检测窗口
  2. 第二步提取图像特征
  3. 第三步设计分类器

4.1检测窗口选择

  • 方法:当在不同的距离下检测不同大小的目标时,最简单也最直观的方法就是用图像金字塔+各种尺度比例的框进行暴力搜索:从左到右,从上到下滑动窗口,然后利用分类方法对目标框进行识别。
  • 问题:如图5.3所示,在一个像素点处选择了长宽比例不同的框。这种利用窗口滑动来确定候选框的方法可以实现我们的预期目标,但是不难想到,这种方法在使用过程中会产生大量的无效窗口,浪费了很多计算资源,而且无法得到精确的位置。目标检测想要得到发展,必须优化这个步骤

4.2特征提取

有了候选窗口后,需要提取图像的特征进行表达,传统的有监督方法和以CNN为代表的无监督特征学习方法都可以派上用场。

仍然以人脸检测算法为例,在传统的人脸检测算法中,有几类特征是经常被使用的。

Haar特征LBP特征HOG特征
定位是经典的V-J框架使用的基本特征是传统人脸检测算法中广泛使用的纹理特征在物体检测领域应用非常广泛
表达表征的是局部的明暗对比关系可以表达物体丰富的纹理信息
特点由于Haar 特征提取速度快,能够表达物体多个方向的边缘变化信息,并且可以利用积分图进行快速计算,因此得到了广泛应用采用中心像素和边缘像素的灰度对比,可以表达物体丰富的纹理信息,同时因为使用的是相对灰度值,因此对均匀变化的光照有很好的适应性通过对物体边缘进行直方图统计来实现编码,相对于Haar 和LBP 两个特征,HOG 的特征表达能力更强、更加通用,被广泛用于物体检测、跟踪和识别等领域
  • 除了以上常用的特征外,还有其他非常优秀的传统特征描述,包括SIFT 和SURF等,这些都是研究人员通过长时间的学术研究和实际项目验证得来的,虽然在比较简单的任务中可以取得很好的结果,但是设计成本很高
  • 传统的检测算法通过对不同的特征进行组合调优,从而增加表达能力
    • 其中以ACF为代表的行人检测方法,组合了20多种不同的传统图像特征。

4.3分类器

分类器是目标检测的最后一步,经常使用的分类器有Adaboost、SVM 和Decision Tree等。接下来对这些分类器进行简要介绍。

1. Adaboost分类器
  • Adaboost是一种迭代的分类方法,在OpenCV开源库中使用的人脸检测框架的分类器正是Adaboost 分类器
  • 核心思想:在很多情况下,一个弱分类器的精度并不高,Adaboost算法的核心思想就是在很多分类器中,自适应地挑选其中分类精度更高的弱分类器,并将其进行组合,从而实现一个更强的分类器

Eg:

目标:当我们要检测一个纯红色的物体时,它的颜色为(255,0,0),但是现在只有3个灰度级别的分类器,各自对应RGB的3种颜色。我们知道,所要检测的物体必须满足3个条件,R 通道灰度值为255,G、B的通道灰度值为0。

问题:此时,使用任何一个灰度级别的分类器都无法完成这个任务,同时会出现很多的误检。例如红色分类器,在最理想的情况下就是学习到了R 的通道必须为255,但是G、B通道学习不到,因此它会检测到1×256×256种颜色,其中,256×256-1种为误检,检测精度为1/(256×256),等于0.0000152。
解决:当我们组合3种分类器,并使其各自达到最好的学习状态时,就可以完全学习到R=255、G=0、B=0这样的特征。我们在实际使用这3个分类器的时候,可以使用串联的方法让图片依次经过3个分类器进行分类过滤,如图5.4所示。

结果:这样虽然每一个弱分类器的检测精度不到万分之一,但最终的检测精度可以是100%,这就是Adaboost算法的核心思想。
总结:Adaboost通过弱弱联合实现了强分类器,在使用的时候通常采用顺序级连的方案。

  • 在级联分类器的前端:是速度较快、性能较弱的分类器,它们可以实现将大部分负样本进行过滤
  • 在级联的后端:是速度较慢、性能较强的分类器,它们可以实现更大计算量,精度也更高的检测

在这里插入图片描述

2. SVM分类器(简略介绍)

支持向量机(Support Vector Machine,SVM)是贝尔实验室的Vapnik 等研究人员在对统计学习理论进行了三十多年研究的基础上提出来的机器学习算法,它让统计学习理论第一次对实际应用产生了重大影响,具有非常重要的意义。

SVM 是基于统计学习VC理论与结构风险极小化原理的算法,它将基于最大化间隔获得的分类超平面思想与基于核技术的方法结合在一起,通过部分数据构建模型,对新的数据进行预测并作出分类决策,表现出了很好的泛化能力

SVM还可以通过引入核函数将低维映射到高维,从而将很多线性不可分的问题转化为线性可分问题,这在图像分类领域中的应用非常广泛。以SVM 为分类器和HOG 为特征的行人检测系列算法是其中非常经典的算法

3.Decision Tree决策树

决策树是一种树形结构,每个内部节点都表示一个属性测试,每个分支都会输出测试结果,每个叶子节点代表一种类别。

Eg:以图5.6所示的二叉树为例,从树根开始分叉,区分是人脸或者非人脸,左边是人脸,右边是非人脸。当进入第一个二叉树分类器节点判断为非人脸时,则直接输出结果,结束任务;如果是人脸,则进入下一层再进行判断。二叉树通过学习每个节点的分类器来构造决策树,最终形成一个强分类器总体的思路与级联分类器非常相似

改进:为了提升决策树的能力,我们可以对决策树进行集成,也就是将其组合成随机森林。假设刚刚提到的决策树是一棵树,对于人脸检测这样的任务,分别学习10棵树,每棵树采用不同的输入或者特征,最终以10棵树的分类结果进行投票,获取多数表决的结果将作为最终的结果,这是一种非常简单但行之有效的方法。

在使用深度学习来完成各项任务尤其是参加各类比赛的时候,一定会使用不同的模型和不同的输入进行集成。例如,常见的是使用不同裁剪子区域进行预测,或者使用不同的基准模型进行预测,最后取平均概率的方法,测试结果相比之前可以得到很大的提升。

参考文献:

《深度学习之图像识别 核心算法与实战案例 (全彩版)》 言有三 著

出版社:清华大学出版社

出版时间:2023年7月第一版(第一次印刷)

ISBN:978-7-302-63527-7

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/264972.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CS_上线三层跨网段机器(完整过程还原)

以前讲过用cs_smb_beacon上线不出网机器,但是真实的网络拓扑肯定不止这么一层的网络! 所以我就来搭建一个复杂一点的网络环境!! 当然了,这三台电脑之间都是不同的网段,(但是同属于一个域环境&a…

第五节:Vben Admin权限-前端控制方式

系列文章目录 第一节:Vben Admin介绍和初次运行 第二节:Vben Admin 登录逻辑梳理和对接后端准备 第三节:Vben Admin登录对接后端login接口 第四节:Vben Admin登录对接后端getUserInfo接口 第五节:Vben Admin权限-前端控制方式 文章目录 系列文章目录前言一、Vben Admin权…

R语言混合效应(多水平/层次/嵌套)模型及贝叶斯实现技术应用

回归分析是科学研究中十分重要的数据分析工具。随着现代统计技术发展,回归分析方法得到了极大改进。混合效应模型(Mixed effect model),即多水平模(Multilevel model)/分层模型(Hierarchical Model)/嵌套模…

【总第49篇】2.3深度学习开发任务实例(2)机器学习和深度学习的对比【大厂AI课学习笔记】

机器学习和深度学习都是用于图片分类任务的强大工具,但它们采用的方法和原理有所不同。下面我将分别解释这两种技术是如何应用于图片分类的,并着重讨论深度学习中的卷积概念。 机器学习在图片分类中的应用 传统的机器学习方法在进行图片分类时&#xf…

python爬虫实战:获取电子邮件和联系人信息

引言 在数字时代,电子邮件和联系人信息成为了许多企业和个人重要的资源,在本文中,我们将探讨如何使用Python爬虫从网页中提取电子邮件和联系人信息,并附上示例代码。 目录 引言 二、准备工作 你可以使用以下命令来安装这些库&a…

VSCode远程开发 Windows11 Linux

问题背景 之前一直用JetBrains的Gateway和本地Linux虚拟机开发,不过笔记本配置不够,太卡了。最近租了个国外的便宜服务器,JetBrains的Gateway总断连,也不知道为什么,所以试试VSCode。 本地 Windows 11 ,远…

vuex配置和使用(vue3配置)

个人理解可能会有所偏差 1、基础使用 首先在创建项目时可以选择vuex和一些其他的配置,如果选择那么他会自动创建store文件夹生成默认格式,如果没有选择可以使用指令: npm install vuexnext --save 然后手动创建即可 import { createStore }…

10 Redis之SB整合Redis+ 高并发问题 + 分布式锁

7. SB整合Redis Spring Boot 中可以直接使用 Jedis 实现对 Redis 的操作,但一般不这样用,而是使用 Redis操作模板 RedisTemplate 类的实例来操作 Redis。 RedisTemplate 类是一个对 Redis 进行操作的模板类。该模板类中具有很多方法,这些方…

git commit 后,本地远端都没有记录,消失不见

今天git commit 之后发现远端没有记录,本地没有最新代码记录 git commit 后,提交记录会消失不见的原因可能是: git只git commit了,没有push到远程分支,切换到其他分支时丢失。而且看不到提交记录,和找不到…

【AIGC】基于深度学习的图像生成与增强技术

摘要: 本论文探讨基于深度学习的图像生成与增强技术在图像处理和计算机视觉领域的应用。我们综合分析了主流的深度学习模型,特别是生成对抗网络(GAN)和变分自编码器(VAE)等,并就它们在实际应用中…

Maya笔记 设置工作目录

Maya会把素材场景等自动保存在工作目录里,我们可以自己定义工作目录 步骤1 创建workspace.mel文件 文件/设置项目 ——>选择一个文件夹,点击设置——>创建默认工作区 这一个后,可以在文件夹里看到.mel文件 步骤2 自动创建文件夹…

Qt程序设计-钟表自定义控件实例

本文讲解Qt钟表自定义控件实例。 效果如下: 创建钟表类 #ifndef TIMEPIECE_H #define TIMEPIECE_H#include <QWidget> #include <QPropertyAnimation> #include <QDebug> #include <QPainter> #include <QtMath>#include <QTimer>#incl…

Spring Boot与Netty:构建高性能的网络应用

点击下载《Spring Boot与Netty&#xff1a;构建高性能的网络应用》 1. 前言 本文将详细探讨如何在Spring Boot应用中集成Netty&#xff0c;以构建高性能的网络应用。我们将首先了解Netty的原理和优势&#xff0c;然后介绍如何在Spring Boot项目中集成Netty&#xff0c;包括详…

Linux进程 ----- 信号处理

目录 前言 一、信号的处理时机 1.1 处理时面临的情况 1.2 “合适”的时机 二、用户态与内核态 2.1 概念理论 2.2 再现 进程地址空间 2.3 信号处理过程 三、信号的捕捉 3.1 内核实现 3.2 sigaction 四、信号部分小结 前言 从信号产生到信号保存&#xff0c;中间经历…

计算机网络-后退N帧协议(弊端 滑动窗口 运行中的GBN 滑动窗口长度习题 GBN协议性能分析 )

文章目录 停等协议的弊端后退N帧协议中的滑动窗口GBN发送方必须响应的三件事GBN接受方要做的事运行中的GBN滑动窗口长度GBN协议重点总结习题1习题2GBN协议性能分析小结 停等协议的弊端 信道利用率低&#xff1a;在停等协议中&#xff0c;发送方在发送完一帧后必须等待接收方确…

高防IP简介

高防IP可以防御的有包括但不限于以下类型&#xff1a; SYN Flood、UDP Flood、ICMP Flood、IGMP Flood、ACK Flood、Ping Sweep 等攻击。高防IP专注于解决云外业务遭受大流量DDoS攻击的防护服务。支持网站和非网站类业务的DDoS、CC防护&#xff0c;用户通过配置转发规则&#x…

蓝桥杯备战刷题one(自用)

1.被污染的支票 #include <iostream> #include <vector> #include <map> #include <algorithm> using namespace std; int main() {int n;cin>>n;vector<int>L;map<int,int>mp;bool ok0;int num;for(int i1;i<n;i){cin>>nu…

项目:shell实现多级菜单脚本编写

目录 1. 提示 2. 演示效果 2.1. 一级菜单 2.2. 二级菜单 2.3. 执行操作 3. 参考代码 1. 提示 本脚本主要实现多级菜单效果&#xff0c;并没有安装LAMP、LNMP环境&#xff0c;如果要用在实际生成环境中部署LNMP、LAMP环境&#xff0c;只需要简单修改一下就可以了。 2. 演…

Mysql运维篇(五) 部署MHA--主机环境配置

一路走来&#xff0c;所有遇到的人&#xff0c;帮助过我的、伤害过我的都是朋友&#xff0c;没有一个是敌人。如有侵权&#xff0c;请留言&#xff0c;我及时删除&#xff01; 大佬博文 https://www.cnblogs.com/gomysql/p/3675429.html MySQL 高可用&#xff08;MHA&#x…

php伪协议 [SWPUCTF 2022 新生赛]ez_ez_php(revenge)

打开题目 题目源代码如下 <?php error_reporting(0); if (isset($_GET[file])) {if ( substr($_GET["file"], 0, 3) "php" ) {echo "Nice!!!";include($_GET["file"]);} else {echo "Hacker!!";} }else {highlight_fi…