python|闲谈2048小游戏和数组的旋转及翻转和转置

目录

2048

生成数组

n阶方阵

方阵旋转

顺时针旋转

逆时针旋转

mxn矩阵

矩阵旋转

测试代码

测试结果

翻转和转置


2048

《2048》是一款比较流行​的数字游戏​,最早于2014年3月20日发行。原版2048由Gabriele Cirulli首先在GitHub上发布,后被移植到各个平台,并且衍生出不计其数的版本。但在网上看到,居说它也不算是原创,是基于《1024》和《小3传奇》的玩法开发而成的;还有一说,它来源于另一款游戏《Threes!》,由Asher Vollmer和Greg Wohlwend合作开发,于2014年2月6日在App Store上架。

2048游戏规则很简单,游戏开始时在4x4的方格中随机出现数字2,每次可以选择上下左右其中一个方向去滑动,每滑动一次,所有的数字方块都会往滑动的方向靠拢外,相邻的相同数字在靠拢时会相加,系统也会在空白的格子里随机增加一个数字2或4。玩家要想办法在这16格范围中,不断上下左右滑动相加数字,从而凑出“2048”这个数字方块。

实际上,这个游戏就是在操作一个4x4的二维数组,数组的元素只要1-11就行了,因为2的11次方就是2048。同样,相邻相同数字的累加就变成了相邻相同指数的递增1。

在编写这个2048游戏前,先来谈谈4x4数组的操作,对python来说虽然也有数组,但通常会用列表来操作。以下就在IDLE shell上流水账操作:

生成数组

16个数字的列表推导式:

>>> [i for i in range(16)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

用*解包更pythonic:

>>> [*range(16)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

分割成4x4二维列表:

>>> [[*range(16)][i*4:i*4+4] for i in range(4)]
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

只是数列如此写法可能更好:

>>> [[*range(i*4,i*4+4)] for i in range(4)]
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

全0列表:

>>> [[0]*4 for _ in range(4)]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

n阶方阵

从4阶方阵扩展到n阶:

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> matrix(4)
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]
>>> matrix(5)
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]
>>> matrix(6)
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35]]

随机生成数字1或2,比例为3:1:

>>> from random import sample as rnd
>>> rnd([1,1,1,2],1)
[1]
>>> rnd([1,1,1,2],1)
[2]
>>> rnd([1,1,1,2],1)
[2]
>>> rnd([1,1,1,2],1)

随机产生1或者2个“1”,比例为2:1:

>>> from random import sample as rnd
>>> x = 4
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0]
>>> rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
x = 5
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]
rnd([0]*(x*x-2)+rnd([0,1,1],2),x*x)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

方阵旋转

numpy有现成的函数rot90(),表示顺时针旋转数组90度。

>>> import numpy as np
>>> np.array(range(16))
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
>>> np.array([[*range(i*4,i*4+4)] for i in range(4)])
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
>>> array = np.array([[*range(i*4,i*4+4)] for i in range(4)])

逆时针旋转,参数k为正数:

>>> np.rot90(array)
array([[ 3,  7, 11, 15],
       [ 2,  6, 10, 14],
       [ 1,  5,  9, 13],
       [ 0,  4,  8, 12]])
>>> np.rot90(array, k=2)
array([[15, 14, 13, 12],
       [11, 10,  9,  8],
       [ 7,  6,  5,  4],
       [ 3,  2,  1,  0]])
>>> np.rot90(array, k=3)
array([[12,  8,  4,  0],
       [13,  9,  5,  1],
       [14, 10,  6,  2],
       [15, 11,  7,  3]])

顺时针旋转,参数k为负数:

>>> np.rot90(array, k=-1)
array([[12,  8,  4,  0],
       [13,  9,  5,  1],
       [14, 10,  6,  2],
       [15, 11,  7,  3]])
>>> np.rot90(array, k=-2)
array([[15, 14, 13, 12],
       [11, 10,  9,  8],
       [ 7,  6,  5,  4],
       [ 3,  2,  1,  0]])
>>> np.rot90(array, k=-3)
array([[ 3,  7, 11, 15],
       [ 2,  6, 10, 14],
       [ 1,  5,  9, 13],
       [ 0,  4,  8, 12]])

不使用numpy,只用列表推导式也能实现旋转:

顺时针旋转

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> mat4 = matrix(4)
>>> mat4
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]
>>> [[mat[len(mat[0])-j-1][i] for j in range(len(mat[0]))] for i in range(len(mat))]
[[12, 8, 4, 0], [13, 9, 5, 1], [14, 10, 6, 2], [15, 11, 7, 3]]

写一个模拟np.array的__repr__方法来检测旋转效果:

class List():# 仅支持二维数组的展示def __init__(self, lst):self.x = lstdef __repr__(self):n = len(str(max(sum(self.x,[]))))res = []for mat in self.x:res.append(', '.join(f'{x:>{n}}' for x in mat))return '],\n\t['.join(res).join(['Array([ [','] ])'])

检测结果如下:

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> rotate = lambda m: [[m[len(m)-j-1][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> mat4 =matrix(4)
>>> List(mat4)
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate(mat4))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(rotate(rotate(mat4)))
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate(rotate(rotate(mat4))))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(rotate(rotate(rotate(rotate(mat4)))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])

结果符合预期,旋转4次恢复原样;同样更高阶方阵也符合:

>>> List(matrix(5))
Array([ [ 0,  1,  2,  3,  4],
    [ 5,  6,  7,  8,  9],
    [10, 11, 12, 13, 14],
    [15, 16, 17, 18, 19],
    [20, 21, 22, 23, 24] ])
>>> List(rotate(matrix(5)))
Array([ [20, 15, 10,  5,  0],
    [21, 16, 11,  6,  1],
    [22, 17, 12,  7,  2],
    [23, 18, 13,  8,  3],
    [24, 19, 14,  9,  4] ])

逆时针旋转

>>> matrix = lambda n:[[*range(i*n,i*n+n)] for i in range(n)]
>>> rotate2 = lambda m:[[m[j][len(m[0])-i-1] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(rotate2(matrix(4)))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(rotate2(rotate2(matrix(4))))
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate2(rotate2(rotate2(matrix(4)))))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(rotate2(rotate2(rotate2(rotate2(matrix(4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate2(matrix(5)))
Array([ [ 4,  9, 14, 19, 24],
    [ 3,  8, 13, 18, 23],
    [ 2,  7, 12, 17, 22],
    [ 1,  6, 11, 16, 21],
    [ 0,  5, 10, 15, 20] ])
>>> List(rotate2(rotate2(matrix(5))))
Array([ [24, 23, 22, 21, 20],
    [19, 18, 17, 16, 15],
    [14, 13, 12, 11, 10],
    [ 9,  8,  7,  6,  5],
    [ 4,  3,  2,  1,  0] ])

mxn矩阵

把方阵拓展到矩阵:

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> List(matrix(3,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
>>> List(matrix(5,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15],
    [16, 17, 18, 19] ])
>>> List(matrix(5,5))
Array([ [ 0,  1,  2,  3,  4],
    [ 5,  6,  7,  8,  9],
    [10, 11, 12, 13, 14],
    [15, 16, 17, 18, 19],
    [20, 21, 22, 23, 24] ])

矩阵旋转

rotate顺时针旋转,rotate2逆时针旋转

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> rotate = lambda m: [[m[len(m)-j-1][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> rotate2 = lambda m:[[m[j][len(m[0])-i-1] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(matrix(3,4))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
>>> List(rotate(matrix(3,4)))
Array([ [ 8,  4,  0],
    [ 9,  5,  1],
    [10,  6,  2],
    [11,  7,  3] ])
>>> List(rotate2(rotate2(rotate2(matrix(3,4)))))
Array([ [ 8,  4,  0],
    [ 9,  5,  1],
    [10,  6,  2],
    [11,  7,  3] ])
>>> List(rotate(rotate(matrix(3,4))))
Array([ [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate2(rotate2(matrix(3,4))))
Array([ [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
>>> List(rotate(rotate(rotate(matrix(3,4)))))
Array([ [ 3,  7, 11],
    [ 2,  6, 10],
    [ 1,  5,  9],
    [ 0,  4,  8] ])
>>> List(rotate2(matrix(3,4)))
Array([ [ 3,  7, 11],
    [ 2,  6, 10],
    [ 1,  5,  9],
    [ 0,  4,  8] ])
>>> List(rotate(rotate(rotate(rotate(matrix(3,4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])
List(rotate2(rotate2(rotate2(rotate2(matrix(3,4))))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11] ])

旋转函数还能写成如下形式,只是坐标与range参数的互调形式:

>>> rotate = lambda m: [[m[j][i] for j in range(len(m)-1,-1,-1)] for i in range(len(m[0]))]
>>> rotate2 = lambda m: [[m[j][i] for j in range(len(m))] for i in range(len(m[0])-1,-1,-1)]

lambda匿名函数虽然很简洁,但没有普通函数易懂,我们把lambda函数改成模拟np.rot90()的普通函数rotate(matrix, k=1),其中参数k为90度的倍数,正数顺时针旋转,负数则逆时针旋转:

def rotate(matrix, k=1):rows = len(matrix)cols = len(matrix[0])res = [[0]*rows for _ in range(cols)]k %= 4if k==1:for i in range(rows):for j in range(cols):res[j][rows-i-1] = matrix[i][j]elif k==2:res = [[0]*cols for _ in range(rows)]for i in range(rows):for j in range(cols):res[rows-i-1][cols-j-1] = matrix[i][j]elif k==3:for i in range(rows):for j in range(cols):res[cols-j-1][i] = matrix[i][j]else:return matrixreturn res

测试代码

def rotate(matrix, k=1):rows = len(matrix)cols = len(matrix[0])res = [[0]*rows for _ in range(cols)]k %= 4if k==1:for i in range(rows):for j in range(cols):res[j][rows-i-1] = matrix[i][j]elif k==2:res = [[0]*cols for _ in range(rows)]for i in range(rows):for j in range(cols):res[rows-i-1][cols-j-1] = matrix[i][j]elif k==3:for i in range(rows):for j in range(cols):res[cols-j-1][i] = matrix[i][j]else:return matrixreturn resdef show(matrix):n = len(str(max(sum(matrix,[]))))res = []for mat in matrix:res.append(', '.join(f'{x:>{n}}' for x in mat))print('],\n\t['.join(res).join(['Array([ [','] ])']))matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]for i in range(-4,5):show(rotate(matrix(4,4), i))for i in range(-4,5):show(rotate(matrix(5,3), i))

测试结果

Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
Array([ [15, 14, 13, 12],
    [11, 10,  9,  8],
    [ 7,  6,  5,  4],
    [ 3,  2,  1,  0] ])
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])
Array([ [12,  9,  6,  3,  0],
    [13, 10,  7,  4,  1],
    [14, 11,  8,  5,  2] ])
Array([ [14, 13, 12],
    [11, 10,  9],
    [ 8,  7,  6],
    [ 5,  4,  3],
    [ 2,  1,  0] ])
Array([ [ 2,  5,  8, 11, 14],
    [ 1,  4,  7, 10, 13],
    [ 0,  3,  6,  9, 12] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])
Array([ [12,  9,  6,  3,  0],
    [13, 10,  7,  4,  1],
    [14, 11,  8,  5,  2] ])
Array([ [14, 13, 12],
    [11, 10,  9],
    [ 8,  7,  6],
    [ 5,  4,  3],
    [ 2,  1,  0] ])
Array([ [ 2,  5,  8, 11, 14],
    [ 1,  4,  7, 10, 13],
    [ 0,  3,  6,  9, 12] ])
Array([ [ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8],
    [ 9, 10, 11],
    [12, 13, 14] ])

翻转和转置

翻转可以是水平方向和重置方向的:

>>> matrix = lambda m, n: [[i * n + j for j in range(n)] for i in range(m)]
>>> flipH = lambda m: [[m[i][len(m[0])-j-1] for j in range(len(m[0]))] for i in range(len(m))]
>>> flipV = lambda m: [[m[len(m)-j-1][i] for i in range(len(m[0]))] for j in range(len(m))]
>>> List(flipH(matrix(4,4)))
Array([ [ 3,  2,  1,  0],
    [ 7,  6,  5,  4],
    [11, 10,  9,  8],
    [15, 14, 13, 12] ])
>>> List(flipV(matrix(4,4)))
Array([ [12, 13, 14, 15],
    [ 8,  9, 10, 11],
    [ 4,  5,  6,  7],
    [ 0,  1,  2,  3] ])
>>> List(flipH(matrix(3,5)))
Array([ [ 4,  3,  2,  1,  0],
    [ 9,  8,  7,  6,  5],
    [14, 13, 12, 11, 10] ])
>>> List(flipV(matrix(3,5)))
Array([ [10, 11, 12, 13, 14],
    [ 5,  6,  7,  8,  9],
    [ 0,  1,  2,  3,  4] ])
>>> List(flipH(matrix(5,4)))
Array([ [ 3,  2,  1,  0],
    [ 7,  6,  5,  4],
    [11, 10,  9,  8],
    [15, 14, 13, 12],
    [19, 18, 17, 16] ])
>>> List(flipV(matrix(5,4)))
Array([ [16, 17, 18, 19],
    [12, 13, 14, 15],
    [ 8,  9, 10, 11],
    [ 4,  5,  6,  7],
    [ 0,  1,  2,  3] ])

转置可以看作是翻转和旋转的组合,对方阵来说就是以对角线为轴的翻转:

>>> transpose = lambda m: [[m[j][i] for j in range(len(m))] for i in range(len(m[0]))]
>>> List(transpose(matrix(4,4)))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])
>>> List(transpose(transpose(matrix(4,4))))
Array([ [ 0,  1,  2,  3],
    [ 4,  5,  6,  7],
    [ 8,  9, 10, 11],
    [12, 13, 14, 15] ])
>>> List(rotate(matrix(4,4)))
Array([ [12,  8,  4,  0],
    [13,  9,  5,  1],
    [14, 10,  6,  2],
    [15, 11,  7,  3] ])
>>> List(flipH(rotate(matrix(4,4))))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])
>>> List(rotate2(matrix(4,4)))
Array([ [ 3,  7, 11, 15],
    [ 2,  6, 10, 14],
    [ 1,  5,  9, 13],
    [ 0,  4,  8, 12] ])
>>> List(flipV(rotate2(matrix(4,4))))
Array([ [ 0,  4,  8, 12],
    [ 1,  5,  9, 13],
    [ 2,  6, 10, 14],
    [ 3,  7, 11, 15] ])

在numpy中,转置由.T属性完成

>>> import numpy as np
>>> arr = np.array(matrix(3,4))
>>> arr
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> arr.T
array([[ 0,  4,  8],
       [ 1,  5,  9],
       [ 2,  6, 10],
       [ 3,  7, 11]])
>>> arr = np.array(matrix(4,4))
>>> arr.T
array([[ 0,  4,  8, 12],
       [ 1,  5,  9, 13],
       [ 2,  6, 10, 14],
       [ 3,  7, 11, 15]])
>>> arr.T.T
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
>>> arr = np.array(matrix(5,4))
>>> arr.T
array([[ 0,  4,  8, 12, 16],
       [ 1,  5,  9, 13, 17],
       [ 2,  6, 10, 14, 18],
       [ 3,  7, 11, 15, 19]])


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/265429.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MQ05】异常消息处理

异常消息处理 上节课我们已经学习到了消息的持久化和确认相关的内容。但是,光有这些还不行,如果我们的消费者出现问题了,无法确认,或者直接报错产生异常了,这些消息要怎么处理呢?直接丢弃?这就是…

浅谈 Linux 网络编程 - 网络字节序

文章目录 前言核心知识关于 小端法关于 大端法网络字节序的转换 函数 前言 在进行 socket 网络编程时,会用到字节流的转换函数、例如 inet_pton、htons 等,那么为什么要用到这些函数呢,本篇主要就是对这部分进行介绍。 核心知识 重点需要记…

韩国突发:将批准比特币ETF

作者:秦晋 韩国两党宣布将批准比特币ETF。比特币也再次成为竞选的宠儿。 4月10日,韩国将迎来每隔4年而进行的一次立法大选。在大选之前,现执政党与反对党都承诺将批准比特币ETF。 我们知道,比特币的主要受众群体以年轻人居多。此前…

idea打包报错,clean、package报错

一、idea在打包时,点击clean或package报错如下: Error running ie [clean]: No valid Maven installation found. Either set the home directory in the configuration dialog or set the M2_HOME environment variable on your system. 示例图&#xf…

揭示预处理中的秘密!(二)

目录 ​编辑 1. #运算符 2. ##运算符 3. 命名约定 4. #undef 5. 命令行定义 6. 条件编译 7. 头文件的被包含的方式 8.嵌套文件包含 9. 其他预处理指令 10. 完结散花 悟已往之不谏,知来者犹可追 …

androidapp开发语言,已获千赞

初级 初级研发工程师的定义是掌握基础的Android知识,能够独立完成一个功能,工作年限大概在1-2年,这个层级大部分人通过看一些资料书籍再经过项目练习很快可以达到。这个级别的人往往需要掌握如下一些技能: 掌握Android 四大组件…

Nginx网络服务六-----IP透传、调度算法和负载均衡

1.实现反向代理客户端 IP 透传 就是在日志里面加上一个变量 Module ngx_http_proxy_module [rootcentos8 ~]# cat /apps/nginx/conf/conf.d/pc.conf server { listen 80; server_name www.kgc.org; location / { index index.html index.php; root /data/nginx/html/p…

等保2.0高风险项全解析:判定标准与应对方法

引言 所谓高风险项,就是等保测评时可以一票否决的整改项,如果不改,无论你多少分都会被定为不合格。全文共58页,写得比较细了,但是想到大家基本不会有耐心去仔细看的(凭直觉)。这几天挑里边相对…

【大数据】Flink 内存管理(一):设置 Flink 进程内存

《Flink 内存管理》系列(已完结),共包含以下 4 篇文章: Flink 内存管理(一):设置 Flink 进程内存Flink 内存管理(二):JobManager 内存分配(含实际…

智慧校园|智慧校园管理小程序|基于微信小程序的智慧校园管理系统设计与实现(源码+数据库+文档)

智慧校园管理小程序目录 目录 基于微信小程序的智慧校园管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、微信小程序前台 2、管理员后台 (1)学生信息管理 (2) 作业信息管理 (3)公告…

shader学习记录——融合、融球效果

融合、融球效果shader,重点在等势面公式上 Shader "Custom/MetaballsShader" {Properties{_MainTex ("Texture", 2D) "white" {}_Color("Color",Color) (1,1,1,1)}SubShader{Tags { "RenderType""Opaque…

什么是去中心化云计算?

去中心化云计算是一种新型的云计算方式,它与传统的中心化云计算不同,将数据和计算任务分布到多个节点上,而不是将数据集中存储在中心服务器上。这种云计算方式具有许多优势,包括提高数据安全性、降低运营成本、增强可扩展性和灵活…

【C语言】学生宿舍信息管理系统

目录 项目说明 1. 数据结构设计 2. 功能实现 3. 主菜单设计 4. 文件操作 5. 系统使用 项目展示 1.主菜单功能界面 ​编辑 2.添加信息 3.查询信息 4.修改信息 5.删除信息 6.退出程序 项目完整代码 结语 在这篇博客中,我们将探讨如何使用C语言来开发…

Java 反射机制

​ 更多内容,前往IT-BLOG ​ 反射Reflection被视为动态语言的关键,反射机制允许程序在执行期间借助于Reflection API取得任何类的内部信息,并能直接操作任意对象的内部属性及方法。反射是一种功能强大且复杂的机制。使用它的主要人员是工具构…

通过QScrollArea寻找最后一个弹簧并且设置弹簧大小

项目原因,最近需要通过QScrollArea寻找其中最后一个弹簧并且设置大小和策略,因为无法直接调用UI指针,所以只能用代码寻找。 直接上代码: if (m_scrollArea){int iScrollWidth m_labelSelectedTitle->width();m_scrollArea-&g…

C语言--- 指针(3)

一.字符指针变量 在指针的类型中&#xff0c;我们知道有一种指针类型为字符指针char * 一般使用&#xff1a; #include<stdio.h> int main() {char ch a;char* p &ch;*p b;printf("%c\n",ch);return 0; } 其实还有一种使用方式 &#xff1a; #inc…

【前端素材】推荐优质后台管理系统Salreo平台模板(附源码)

一、需求分析 当我们从多个层次来详细分析后台管理系统时&#xff0c;可以将其功能和定义进一步细分&#xff0c;以便更好地理解其在不同方面的作用和实际运作。 1. 结构层次 在结构层次上&#xff0c;后台管理系统可以分为以下几个部分&#xff1a; a. 辅助功能模块&#…

2024年2月国内如何快速注册OnlyFans最新小白教学

前言 onlyface软件是一个创立于2016年的订阅式社交媒体平台&#xff0c;创作者可以在自己的账号发布原创的照片或视频&#xff0c;并将其设置成付费模式&#xff0c;若用户想查看则需要每月交费订阅。 需要注意的是&#xff0c;网络上可能存在非法或不道德的应用程序&#xff…

【C++】树形关联式容器set、multiset、map和multimap的介绍与使用

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.关联式容器 2.键…

鸿蒙应用成企业布局新方向 鸿蒙人才成开年之后“香饽饽”

随着春节假期的结束&#xff0c;职场人也开始返工返岗。与此同时2024年春招季也已拉开帷幕。2月23日&#xff0c;据智联招聘发布的《2024年春招市场行情周报》&#xff08;第一期&#xff09;显示&#xff0c;2024年春节后第一周&#xff0c;依托消费需求释放与制造业返工复产&…