算法沉淀——动态规划之子序列问题(下)(leetcode真题剖析)

在这里插入图片描述

算法沉淀——动态规划之子序列问题

  • 01.最长定差子序列
  • 02.最长的斐波那契子序列的长度
  • 03.最长等差数列
  • 04.等差数列划分 II - 子序列

01.最长定差子序列

题目链接:https://leetcode.cn/problems/longest-arithmetic-subsequence-of-given-difference/

给你一个整数数组 arr 和一个整数 difference,请你找出并返回 arr 中最长等差子序列的长度,该子序列中相邻元素之间的差等于 difference

子序列 是指在不改变其余元素顺序的情况下,通过删除一些元素或不删除任何元素而从 arr 派生出来的序列。

示例 1:

输入:arr = [1,2,3,4], difference = 1
输出:4
解释:最长的等差子序列是 [1,2,3,4]。

示例 2:

输入:arr = [1,3,5,7], difference = 1
输出:1
解释:最长的等差子序列是任意单个元素。

示例 3:

输入:arr = [1,5,7,8,5,3,4,2,1], difference = -2
输出:4
解释:最长的等差子序列是 [7,5,3,1]。 

提示:

  • 1 <= arr.length <= 105
  • -104 <= arr[i], difference <= 104

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[i] 表示以第 i 个位置的元素为结尾的所有子序列中,最长的等差子序列的长度。
  2. 状态转移方程: 对于 dp[i],上一个定差子序列的取值定为 arr[i] - difference。只要找到以上一个数为结尾的定差子序列长度的 dp[arr[i] - difference],然后加上 1,就是以 i 为结尾的定差子序列的长度。这里可以使用哈希表进行优化,将元素和 dp[j] 绑定,放入哈希表中。
  3. 初始化: 刚开始的时候,需要把第一个元素放进哈希表中,即 hash[arr[0]] = 1
  4. 填表顺序: 根据状态转移方程,填表顺序是从左往右。
  5. 返回值: 根据状态表达,返回整个 dp 数组中的最大值。

代码

class Solution {
public:int longestSubsequence(vector<int>& arr, int difference) {unordered_map<int,int> hash;hash[arr[0]]=1;int ret=1;for(int i=1;i<arr.size();i++){hash[arr[i]]=hash[arr[i]-difference]+1;ret=max(ret,hash[arr[i]]);}return ret;}
};

02.最长的斐波那契子序列的长度

题目链接:https://leetcode.cn/problems/length-of-longest-fibonacci-subsequence/

如果序列 X_1, X_2, ..., X_n 满足下列条件,就说它是 斐波那契式 的:

  • n >= 3
  • 对于所有 i + 2 <= n,都有 X_i + X_{i+1} = X_{i+2}

给定一个严格递增的正整数数组形成序列 arr ,找到 arr 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。

(回想一下,子序列是从原序列 arr 中派生出来的,它从 arr 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8][3, 4, 5, 6, 7, 8] 的一个子序列)

示例 1:

输入: arr = [1,2,3,4,5,6,7,8]
输出: 5
解释: 最长的斐波那契式子序列为 [1,2,3,5,8] 。

示例 2:

输入: arr = [1,3,7,11,12,14,18]
输出: 3
解释: 最长的斐波那契式子序列有 [1,11,12]、[3,11,14] 以及 [7,11,18] 。

提示:

  • 3 <= arr.length <= 1000
  • 1 <= arr[i] < arr[i + 1] <= 10^9

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[j][i] 表示以第 j 位置以及第 i 位置的元素为结尾的所有的子序列中,最长的斐波那契子序列的长度。
  2. 状态转移方程:nums[j] = bnums[i] = c,那么这个序列的前一个元素就是 a = c - b。根据 a 的情况讨论:
    • 如果 a 存在,下标为 k,并且 a < b,那么 dp[j][i] = dp[k][j] + 1
    • 如果 a 存在,但是 b < a < c,那么 dp[j][i] = 2
    • 如果 a 不存在,那么 dp[j][i] = 2
  3. 优化点: 在状态转移方程中,需要确定 a 元素的下标,可以在填表之前,将所有的「元素 + 下标」绑定在一起,放到哈希表中。
  4. 初始化: 将表里面的值都初始化为 2
  5. 填表顺序:
    • 先固定最后一个数;
    • 然后枚举倒数第二个数。
  6. 返回值: 返回 dp 表中的最大值 ret。但是 ret 可能小于 3,小于 3 说明不存在,需要判断一下。

代码

class Solution {
public:int lenLongestFibSubseq(vector<int>& arr) {int n=arr.size();unordered_map<int,int> hash;for(int i=0;i<n;i++) hash[arr[i]]=i;vector<vector<int>> dp(n,vector<int>(n,2));int ret=2;for(int i=2;i<n;++i){for(int j=1;j<i;j++){int x=arr[i]-arr[j];if(x<arr[j]&&hash.count(x))dp[j][i] = dp[hash[x]][j]+1;ret = max(ret,dp[j][i]);}}return ret<3?0:ret;}
};

03.最长等差数列

题目链接:https://leetcode.cn/problems/longest-arithmetic-subsequence/

给你一个整数数组 nums,返回 nums 中最长等差子序列的长度

回想一下,nums 的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik] ,且 0 <= i1 < i2 < ... < ik <= nums.length - 1。并且如果 seq[i+1] - seq[i]( 0 <= i < seq.length - 1) 的值都相同,那么序列 seq 是等差的。

示例 1:

输入:nums = [3,6,9,12]
输出:4
解释: 
整个数组是公差为 3 的等差数列。

示例 2:

输入:nums = [9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。

示例 3:

输入:nums = [20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。 

提示:

  • 2 <= nums.length <= 1000
  • 0 <= nums[i] <= 500

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[i][j] 表示以第 i 位置以及第 j 位置的元素为结尾的所有的子序列中,最长的等差序列的长度。
  2. 状态转移方程:nums[i] = bnums[j] = c,那么这个序列的前一个元素就是 a = 2 * b - c。根据 a 的情况讨论:
    • 如果 a 存在,下标为 k,并且 a < b,那么我们需要以 k 位置以及 i 位置元素为结尾的最长等差序列的长度,然后再加上 j 位置的元素即可。于是 dp[i][j] = dp[k][i] + 1。这里因为会有许多个 k,我们仅需离 i 最近的 k 即可。因此任何最长的都可以以 k 为结尾;
    • 如果 a 存在,但是 b < a < c,那么 dp[i][j] = 2
    • 如果 a 不存在,那么 dp[i][j] = 2
  3. 优化点: 在状态转移方程中,需要确定 a 元素的下标。可以一边动态规划,一边保存最近的元素的下标,不用保存下标数组。遍历的时候,先固定倒数第二个数,再遍历倒数第一个数。这样可以在 i 使用完时候,将 nums[i] 扔到哈希表中。
  4. 初始化: 将表里面的值都初始化为 2
  5. 填表顺序:
    • 先固定倒数第二个数;
    • 然后枚举倒数第一个数。
  6. 返回值: 返回 dp 表中的最大值。

代码

class Solution {
public:int longestArithSeqLength(vector<int>& nums) {unordered_map<int,int> hash;hash[nums[0]]=0;int n=nums.size();vector<vector<int>> dp(n,vector<int>(n,2));int ret=2;for(int i=1;i<n;i++){for(int j=i+1;j<n;j++){int x=2*nums[i]-nums[j];if(hash.count(x)) dp[i][j] = dp[hash[x]][i] + 1;ret=max(ret,dp[i][j]);}hash[nums[i]]=i;}return ret;}
};

04.等差数列划分 II - 子序列

题目链接:https://leetcode.cn/problems/arithmetic-slices-ii-subsequence/

给你一个整数数组 nums ,返回 nums 中所有 等差子序列 的数目。

如果一个序列中 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该序列为等差序列。

  • 例如,[1, 3, 5, 7, 9][7, 7, 7, 7][3, -1, -5, -9] 都是等差序列。
  • 再例如,[1, 1, 2, 5, 7] 不是等差序列。

数组中的子序列是从数组中删除一些元素(也可能不删除)得到的一个序列。

  • 例如,[2,5,10][1,2,1,***2***,4,1,***5\***,***10***] 的一个子序列。

题目数据保证答案是一个 32-bit 整数

示例 1:

输入:nums = [2,4,6,8,10]
输出:7
解释:所有的等差子序列为:
[2,4,6]
[4,6,8]
[6,8,10]
[2,4,6,8]
[4,6,8,10]
[2,4,6,8,10]
[2,6,10]

示例 2:

输入:nums = [7,7,7,7,7]
输出:16
解释:数组中的任意子序列都是等差子序列。

提示:

  • 1 <= nums.length <= 1000
  • -231 <= nums[i] <= 231 - 1

思路

  1. 状态表达: 定义动态规划数组 dp,其中 dp[i][j] 表示以第 i 位置以及第 j 位置的元素为结尾的所有的子序列中,等差子序列的个数。
  2. 状态转移方程:nums[i] = bnums[j] = c,那么这个序列的前一个元素就是 a = 2 * b - c。根据 a 的情况讨论:
    • 如果 a 存在,下标为 k,并且 a < b,那么以 k 元素以及 i 元素结尾的等差序列的个数为 dp[k][i],在这些子序列的后面加上 j 位置的元素依旧是等差序列。但是这里会多出来一个以 k, i, j 位置的元素组成的新的等差序列,因此 dp[i][j] += dp[k][i] + 1
    • 因为 a 可能有很多个,需要全部累加起来。
  3. 优化点: 在状态转移方程中,需要确定 a 元素的下标。因此在 dp 之前,将所有元素和下标数组绑定在一起,放到哈希表中。这里保存下标数组是因为需要统计个数。
  4. 初始化: 刚开始是没有等差数列的,因此初始化 dp 表为 0
  5. 填表顺序:
    • 先固定倒数第一个数;
    • 然后枚举倒数第二个数。
  6. 返回值: 统计所有的等差子序列,返回 dp 表中所有元素的和。

代码

class Solution {
public:int numberOfArithmeticSlices(vector<int>& nums) {int n=nums.size();unordered_map<long long,vector<int>> hash;for(int i=0;i<n;i++) hash[nums[i]].push_back(i);vector<vector<int>> dp(n,vector<int>(n));int sum=0;for(int j=2;j<n;j++){for(int i=1;i<j;i++){long long x=(long long)nums[i]*2-nums[j];if(hash.count(x)) for(int& k:hash[x])if(k<i) dp[i][j]+=dp[k][i]+1;sum+=dp[i][j];}}return sum;}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/265539.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Promise 介绍与基本使用 - 学习笔记

Promise 介绍与基本使用 1、 Promise 是什么&#xff1f;2、创建 Promise 实例对象3、Promise 实例方法4、Promise 的基本工作流程5、实例方法6、静态方法7、async 和 await7.1、关键字7.2、实例7.3、区别7.4、为什么使用 async/await 比较好&#xff1f; 1、 Promise 是什么&a…

【Vite】解决Vite http proxy error: Error: connect ECONNREFUSED

今天写bug&#xff0c;发现了这个问题 我经过我一晚上的搜索努力&#xff0c;在github上找到了解决办法&#xff0c;不得不说&#xff0c;交友网站还是很好用的。 参考 这一行是关键代码。 因为我连的是本地后台服务&#xff0c;所以最后配置成这样 server: {open: true,pro…

Linux浅学笔记04

目录 Linux实用操作 Linux系统下载软件 yum命令 apt systemctl命令 ln命令 日期和时区 IP地址 主机名 网络传输-下载和网络请求 ping命令 wget命令 curl命令 网络传输-端口 进程 ps 命令 关闭进程命令&#xff1a; 主机状态监控命令 磁盘信息监控&#xff1a…

大数据之Flink优化

文章目录 导言&#xff1a;Flink调优概览第1章 资源配置调优1.1 内存设置1.1.1 TaskManager 内存模型1.1.2 生产资源配置示例 1.2 合理利用 cpu 资源1.2.1 使用 DefaultResourceCalculator 策略1.2.2 使用 DominantResourceCalculator 策略1.2.3 使用DominantResourceCalculato…

消息中间件篇之Kafka-消息不丢失

一、 正常工作流程 生产者发送消息到kafka集群&#xff0c;然后由集群发送到消费者。 但是可能中途会出现消息的丢失。下面是解决方案。 二、 生产者发送消息到Brocker丢失 1. 设置异步发送 //同步发送RecordMetadata recordMetadata kafkaProducer.send(record).get();//异…

机器学习:SVM算法(Python)

一、核函数 kernel_func.py import numpy as npdef linear():"""线性核函数:return:"""def _linear(x_i, x_j):return np.dot(x_i, x_j)return _lineardef poly(degree3, coef01.0):"""多项式核函数:param degree: 阶次:param …

K8S-001-Virtual box - Network Config

A. 配置两个IP&#xff0c; 一个连接内网&#xff0c;一个链接外网: 1. 内网配置(Host only&#xff0c; 不同的 virutal box 的版本可以不一样&#xff0c;这些窗口可能在不同的地方&#xff0c;但是配置的内容是一样的): 静态IP 动态IP 2. 外网&#xff08;创建一个 Networ…

【Linux】进程优先级以及Linux内核进程调度队列的简要介绍

进程优先级 基本概念查看系统进程修改进程的优先级Linux2.6内核进程调度队列的简要介绍和进程优先级有关的概念进程切换 基本概念 为什么会存在进程优先级&#xff1f;   进程优先级用于确定在资源竞争的情况下&#xff0c;哪个进程将被操作系统调度为下一个运行的进程。进程…

【Ubuntu】使用WSL安装Ubuntu

WSL 适用于 Linux 的 Windows 子系统 (WSL) 是 Windows 的一项功能&#xff0c;可用于在 Windows 计算机上运行 Linux 环境&#xff0c;而无需单独的虚拟机或双引导。 WSL 旨在为希望同时使用 Windows 和 Linux 的开发人员提供无缝高效的体验。安装 Linux 发行版时&#xff0c…

数据库架构师之道:MySQL安装与系统整合指南

目录 MySQL数据库安装&#xff08;centos&#xff09; 版本选择 企业版 社区版 选哪个 MySQL特点 MySQL服务端-客户端 mysql下载选择 软件包解释 安装MySQL的方式 rpm包安装 yum方式安装 源码编译安装★ 具体的编译安装步骤★★ 环境准备 free -m命令 cat /pr…

基于java Springboot实现课程评分系统设计和实现

基于java Springboot实现课程评分系统设计和实现 博主介绍&#xff1a;多年java开发经验&#xff0c;专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留言 文末获取源…

【寸铁的刷题笔记】图论、bfs、dfs

【寸铁的刷题笔记】图论、bfs、dfs 大家好 我是寸铁&#x1f44a; 金三银四&#xff0c;图论基础结合bfs、dfs是必考的知识点✨ 快跟着寸铁刷起来&#xff01;面试顺利上岸&#x1f44b; 喜欢的小伙伴可以点点关注 &#x1f49d; &#x1f31e;详见如下专栏&#x1f31e; &…

我在代码随想录|写代码Day27 | 贪心算法 | 122.买卖股票的最佳时机 II,55. 跳跃游戏, 45.跳跃游戏 II

&#x1f525;博客介绍&#xff1a; 27dCnc &#x1f3a5;系列专栏&#xff1a; <<数据结构与算法>> << 算法入门>> << C项目>> &#x1f3a5; 当前专栏: <<数据结构与算法>> 专题 : 数据结构帮助小白快速入门算法 &…

代码随想录算法训练营29期|day64 任务以及具体安排

第十章 单调栈part03 有了之前单调栈的铺垫&#xff0c;这道题目就不难了。 84.柱状图中最大的矩形class Solution {int largestRectangleArea(int[] heights) {Stack<Integer> st new Stack<Integer>();// 数组扩容&#xff0c;在头和尾各加入一个元素int [] ne…

算法沉淀——动态规划之路径问题(leetcode真题剖析)

算法沉淀——动态规划之路径问题 01.不同路径02.不同路径 II03.珠宝的最高价值04.下降路径最小和05.最小路径和06.地下城游戏 01.不同路径 题目链接&#xff1a;https://leetcode.cn/problems/unique-paths/ 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图…

鸿运(通天星CMSV6车载)主动安全监控云平台敏感信息泄露漏洞

文章目录 前言声明一、系统简介二、漏洞描述三、影响版本四、漏洞复现五、修复建议 前言 鸿运主动安全监控云平台实现对计算资源、存储资源、网络资源、云应用服务进行7*24小时全时区、多地域、全方位、立体式、智能化的IT运维监控&#xff0c;保障IT系统安全、稳定、可靠运行…

Mycat核心教程--Mycat 监控工具【四】

Mycat核心教程--Mycat 监控工具 九、Mycat 监控工具9.1.Mycat-web 简介9.2.Mycat-web 配置使用9.2.1.ZooKeeper 安装【上面有】9.2.2.Mycat-web 安装9.2.2.1.下载安装包9.2.2.2.安装包拷贝到Linux系统/opt目录下&#xff0c;并解压9.2.2.3.拷贝mycat-web文件夹到/usr/local目录…

堆和堆排序【数据结构】

目录 一、堆1. 堆的存储定义2. 初始化堆3. 销毁堆4. 堆的插入向上调整算法 5. 堆的删除向下调整算法 6. 获取堆顶数据7. 获取堆的数据个数8. 堆的判空 二、Gif演示三、 堆排序1. 堆排序(1) 建大堆(2) 排序 2.Topk问题 四、完整代码1.堆的代码Heap.cHeap.htest.c 2. 堆排序的代码…

最新IE跳转Edge浏览器解决办法(2024.2.26)

最新IE跳转Edge浏览器解决办法&#xff08;2024.2.26&#xff09; 1. IE跳转原因1.1. 原先解决办法1.2. 最新解决办法1.3. 最后 1. IE跳转原因 关于IE跳转问题是由于在2023年2月14日&#xff0c;微软正式告别IE浏览器&#xff0c;导致很多使用Windows10系统的电脑在打开IE浏览…

树莓派 关闭低电压闪电报警和文字报警

关闭低电压闪电图标报警 方法&#xff1a; sudo nano /boot/config.txt在末尾加上 avoid_warnings1重启就可以了 关闭文字报警 方法&#xff1a; sudo apt remove lxplug-ptbatt然后重启就可以了