【MATLAB】tvf_emd_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

TVF-EMD_MFE_SVM_LSTM 神经网络时序预测算法是一种结合了变分模态分解(TVF-EMD)、多尺度特征提取(MFE)、聚类后展开支持向量机(SVM)和长短期记忆神经网络(LSTM)的复杂预测方法。下面是对该算法的详细介绍:

1. 变分模态分解(TVF-EMD)

  • TVF-EMD 是一种自适应信号分解方法,它将复杂时间序列分解为多个固有模态函数(IMF)和一个残差项。TVF-EMD 是经验模态分解(EMD)的一种变体,通过引入变分框架来优化分解过程,使得分解更加精确和稳定。

  • 通过 TVF-EMD,算法能够有效地提取时间序列中的复杂模式和趋势,为后续的预测提供更准确的数据表示。每个 IMF 代表了原始时间序列中的一个特定频率或尺度的成分,而残差项则包含了剩余的趋势或噪声。

2. 多尺度特征提取(MFE)

  • MFE 技术用于从 TVF-EMD 分解得到的 IMF 和残差项中提取多尺度特征。这些特征包括统计特性、频域特性、时域特性等,能够全面描述每个 IMF 和残差项在不同尺度上的行为。

  • 通过 MFE,算法能够捕捉到时间序列中的局部和全局模式,为后续的预测模型提供更丰富、更有代表性的信息。这些特征可以作为预测模型的输入,帮助模型更好地理解和预测时间序列的变化。

3. 支持向量机(SVM)

  • SVM 是一种常用的监督学习算法,适用于处理分类和回归问题。在 TVF-EMD_MFE_SVM_LSTM 算法中,SVM 被用来初步预测每个 IMF 和残差项的未来值。

  • 利用历史数据和 MFE 提取的多尺度特征,SVM 可以训练多个独立的预测模型,每个模型对应一个 IMF 或残差项。这些模型能够捕捉到数据中的非线性关系,并为后续的 LSTM 模型提供初始预测结果。

4. 长短期记忆神经网络(LSTM)

  • LSTM 是一种特殊的循环神经网络(RNN),特别适合处理具有长期依赖关系的时间序列数据。在 TVF-EMD_MFE_SVM_LSTM 算法中,LSTM 用于进一步优化 SVM 的初步预测结果。

  • LSTM 接收 SVM 的预测结果和 MFE 提取的多尺度特征作为输入,通过其内部的记忆单元和门控机制,学习到时间序列中的长期依赖关系。LSTM 模型可以对每个 IMF 和残差项进行更精确的预测。

综上所述,TVF-EMD_MFE_SVM_LSTM 神经网络时序预测算法结合了变分模态分解、多尺度特征提取、支持向量机和长短期记忆神经网络的优点,旨在实现对复杂时间序列数据的高精度预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。

2 出图效果

附出图效果如下:

3 代码获取

代码见附件

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/265599.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于MQTT协议实现微服务架构事件总线

一、场景描述 昨天在博客《客户端订阅服务端事件的实现方法》中提出了利用websocket、服务端EventEmitter和客户端mitt实现客户端订阅服务端事件,大大简化了客户端对服务端数据实时响应的逻辑。上述方案适用于单服务节点的情形。 对于由服务集群支撑的微服务架构&…

一文讲清DTO、BO、PO、VO

DTO、BO、PO、VO是什么? 在后端开发中,比如传统的MVC架构和现在流行的DDD架构,经常会使用到下列几种对象的概念 DTO (Data Transfer Object) 数据传输对象: DTO设计模式用于将数据从服务端传输到客户端,或者在不同的…

代码随想录训练营第31天 | 理论基础、LeetCode 455.分发饼干、

目录 理论基础 视频讲解:手把手带你学会操作链表 | 贪心算法理论基础!_哔哩哔哩_bilibili LeetCode 455.分发饼干 文章讲解:代码随想录(programmercarl.com) 视频讲解:贪心算法,你想先喂哪个小孩?| Le…

物业智能水电抄表管理系统

物业智能水电抄表管理系统是物业管理行业的关键技术之一,其结合了智能化、远程监控和数据分析等功能,为物业管理公司和业主提供了高效、精准的水电抄表管理解决方案。该系统具有多项优势,能够提升物业管理效率,降低成本&#xff0…

深入理解计算机系统学习笔记

1.算术和逻辑操作 下图是一些整数和逻辑操作 这些操作被分为四组:加载有效地址、一元操作、二元操作和移位。二元操作有两个操作数,而一元操作有一个操作数。 1.1加载有效地址 加载有效地址(load effective address)指令 leaq 实际上是 mo…

Pulsar3.2 Function的介绍与使用

概念 Function 步骤 Pulsar Functions是运行在Pulsar上面的计算框架,输入和输出都是基于Pulsar的Topic。通过使用Function可以对进入Pulsar集群的消息进行简单的清洗、计算,这样不仅避免额外部署单独的流处理引擎(SPE),最大限度的提高开发/…

【力扣hot100】刷题笔记Day14

前言 又是新的一周,快乐的周一,快乐地刷题,今天把链表搞完再干活! 114. 二叉树展开为链表 - 力扣(LeetCode) 前序遍历 class Solution:def flatten(self, root: Optional[TreeNode]) -> None:if not r…

Bicycles(变形dijkstra,动态规划思想)

Codeforces Round 918 (Div. 4) G. Bicycles G. Bicycles 题意: 斯拉夫的所有朋友都打算骑自行车从他们住的地方去参加一个聚会。除了斯拉维奇,他们都有一辆自行车。他们可以经过 n n n 个城市。他们都住在城市 1 1 1 ,想去参加位于城市…

【Java程序员面试专栏 算法思维】四 高频面试算法题:回溯算法

一轮的算法训练完成后,对相关的题目有了一个初步理解了,接下来进行专题训练,以下这些题目就是汇总的高频题目,本篇主要聊聊回溯算法,主要就是排列组合问题,所以放到一篇Blog中集中练习 题目关键字解题思路时间空间全排列回溯算法【元素无重不可复选】构造全排列树,用使…

kafka三节点集群平滑升级过程指导

一、前言 Apache Kafka作为常用的开源分布式流媒体平台,可以实时发布、订阅、存储和处理数据流,多用于作为消息队列获取实时数据,构建对数据流的变化进行实时反应的应用程序,已被数千家公司用于高性能数据管道、流分析、数据集成和任务关键型…

Redis String 类型底层揭秘

目录 前言 String 类型低层数据结构 节省内存的数据结构 前言 Redis 的 string 是个 “万金油” ,这么评价它不为过. 它可以保存Long 类型整数,字符串, 甚至二进制也可以保存。对于key,value 这样的单值,查询以及插…

详解Kotlin中run、with、let、also与apply的使用和区别

Kotlin作为一种现代、静态类型的编程语言,不仅提供了丰富的特性,还提供了极具表现力的函数:run, with, let, also, 和 apply。理解这些函数的不同之处对于编写高效、易于维护的代码至关重要。 函数对比表 函数对象引用返回值使用场景runthi…

猜数游戏(个人学习笔记黑马学习)

案例需求 定义一个数字(1~10,随机产生),通过3次判断来猜出来数字 案例要求: 1.数字随机产生,范围1-10 2.有3次机会猜测数字,通过 3.层嵌套判断实现每次猜不中,会提示大了或小了 提示,通过如下代…

【海贼王的数据航海:利用数据结构成为数据海洋的霸主】链表—单链表

目录 1 -> 链表 1.1 -> 链表的概念及结构 1.2 -> 链表的分类 2 -> 无头单向非循环链表(单链表) 2.1 -> 接口声明 2.2 -> 接口实现 2.2.1 -> 动态申请一个结点 2.2.2 -> 单链表的打印 2.2.3 -> 单链表的尾插 2.2.4 -> 单链表的头插 2.…

消息中间件篇之RabbitMQ-消息不丢失

一、生产者确认机制 RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功。 当消息没有到交换机就失败了,就会返回publish-confirm。当消息没有到达MQ时&…

2.27数据结构

1.链队 //link_que.c #include "link_que.h"//创建链队 Q_p create_que() {Q_p q (Q_p)malloc(sizeof(Q));if(qNULL){printf("空间申请失败\n");return NULL;}node_p L(node_p)malloc(sizeof(node));if(LNULL){printf("申请空间失败\n");return…

DETR(1):论文详解

文章目录 1. DETR 模型结构2.损失函数2.1 预测结果和GT 的匹配2.2 训练的loss计算3.实验3.1 大物体表现效果好3.2 Transformer Encoder 和Decoder的作用3.3 object query4. 伪代码5. 结论

【《高性能 MySQL》摘录】第 2 章 MySQL 基准测试

文章目录 2.1 为什么需要基准测试2.2 基准测试的策略2.2.1 测试何种指标 2.3 基准测试方法2.3.1 设计和规划基准测试2.3.2 基准测试应该运行多长时间2.3.3 获取系统性能和状态2.3.4 获得准确的测试结果2.3.5 运行基准测试并分析结果2.3.6 绘图的重要性 2.4 基准测试工具…

IntelliJ IDEA 2023:创新不止步,开发更自由 mac/win版

IntelliJ IDEA 2023激活版是一款强大而智能的集成开发环境(IDE),为开发者提供了一系列先进的功能和工具,帮助他们更高效地编写、调试和测试代码。 IntelliJ IDEA 2023 软件获取 IntelliJ IDEA 2023继承了其前代版本的优秀基因,并在此基础上进…

2月28日代码随想录二叉搜索树中的众数

摸了一个寒假了,得赶一赶了 251.二叉搜索树中的众数 给你一个含重复值的二叉搜索树(BST)的根节点 root ,找出并返回 BST 中的所有 众数(即,出现频率最高的元素)。 如果树中有不止一个众数&am…