数仓项目6.0(二)数仓

中间的几步意义就在于,缓存中间处理数据样式,避免重复计算浪费算力

分层

ODS(Operate Data Store)

Spark计算过程中,存在shuffle的操作,而shuffle会将计算过程一分为二,前一阶段不执行完,不能执行后面

数据仓库中的不同步骤也存在同样的情况,数据仓库中不称之为阶段,称之为层,每一层就有自己的名称以及对应的逻辑

就是存数据,有一定的整合计算

DWD(Data Warehouse Detail)

对ODS层的数据进行加工处理,为了后面的统计分析做准备

这里的加工表示一个比较宽泛的概念,没有具体的操作

DWS(Data Warehouse Summary)

汇总,冗余,减少计算量

ADS(Application Data Service)

结果数据

DIM共通层(维度层)

从不同维度,几个维度,分析不同指标

之间流转

SQL,并且需要一个任务调度器

想要节省计算,建表是关键,把该有的数据都放到一个表,在操作

建模

ER模型

数据仓库之父Bill Inmon提出的建模方法是从全企业的高度,用实体关系(Entity Relationship,ER)模型来描述企业业务,并用规范化的方式表示出来,在范式理论上符合3NF。遵循的范式级别越高,数据冗余性就越低。

实体关系模型

实体表示一个对象,关系是指两个实体之间的关系,

数据库规范化

数据库规范化是使用一系列范式设计数据库(通常是关系型数据库)的过程,其目的是减少数据冗余,增强数据的一致性。

维度模型

维度模型将复杂的业务通过事实维度两个概念进行呈现。事实通常对应业务过程,而维度通常对应业务过程发生时所处的环境。

:业务过程可以概括为一个个不可拆分的行为事件,例如电商交易中的下单,取消订单,付款,退单等,都是业务过程。下图为一个典型的维度模型,其中位于中心的SalesOrder为事实表,其中保存的是下单这个业务过程的所有记录。位于周围每张表都是维度表,包括Date(日期),Customer(顾客),Product(产品),Location(地区)等,这些维度表就组成了每个订单发生时所处的环境,即何人、何时、在何地下单了何种产品。

数仓搭建

数仓项目6.0配置大全(hadoop/Flume/zk/kafka/mysql配置)-CSDN博客

连接DataGrip

数仓开发工具可选用DBeaver或者DataGrip。两者都需要用到JDBC协议连接到Hive,故需要启动HiveServer2。

hiveserver2后台启动及关闭_如何关闭hiveserver2后台进程-CSDN博客

模拟数据准备

在这一阶段,只要保证数仓的数据源-hdfs中有数据即可

先将HDFS上/origin_data路径下之前的数据删除。

启动hadoop、zk、ka、fl、f2

修改hadoop102节点的/opt/module/applog/application.yml文件,将mock.date,mock.clear,mock.clear.user,mock.new.user,mock.log.db.enable五个参数调整为如下的值。

#业务日期

mock.date: "2022-06-04"

#是否重置业务数据

mock.clear.busi: 1

#是否重置用户数据

mock.clear.user: 1

# 批量生成新用户数量

mock.new.user: 100

# 日志是否写入数据库一份  写入z_log表中

mock.log.db.enable: 0

执行数据生成脚本lg,生成第一天2022-06-04的历史数据

修改/opt/module/applog/application.properties文件,将mock.date、mock.clear,mock.clear.user,mock.new.user四个参数调整为如图所示的值。

#业务日期

mock.date: "2022-06-05"

#是否重置业务数据

mock.clear.busi: 0

#是否重置用户数据

mock.clear.user: 0

# 批量生成新用户

mock.new.user: 0

执行数据生成脚本,生成第二天2022-06-05的历史数据。

之后只修改/opt/module/applog/application.properties文件中的mock.date参数,依次改为2022-06-06,2022-06-07,并分别生成对应日期的数据。

删除/origin_data/gmall/log目录,将⑤中提到的参数修改为2022-06-08,并生成当日模拟数据。(数据库中有了,不需要日志)

执行全量表同步脚本

mysql_to_hdfs_full.sh all 2022-06-08

由于Maxwell支持断点续传,而上述重新生成业务数据的过程,会产生大量的binlog操作日志,这些日志我们并不需要。故此处需清除Maxwell的断点记录,令其从binlog最新的位置开始采集。

drop table maxwell.bootstrap;
drop table maxwell.columns;
drop table maxwell.databases;
drop table maxwell.heartbeats;
drop table maxwell.positions;
drop table maxwell.schemas;
drop table maxwell.tables;

vim /opt/module/maxwell/config.properties

mock_date=2022-06-08

启动Maxwell,执行增量表首日

mysql_to_kafka_inc_init.sh all

ODS层

(1)ODS层的表结构设计依托于从业务系统同步过来的数据结构。

(2)ODS层要保存全部历史数据,故其压缩格式应选择压缩比较高的,此处选择gzip(海量数据,多压,但压缩效率低)。

(3)ODS层表名的命名规范为:ods_表名_单分区增量全量标识(inc/full)。

日志表

sql结构化类型小知识

DROP TABLE IF EXISTS ods_log_inc;
CREATE EXTERNAL TABLE ods_log_inc
(`common` STRUCT<ar :STRING,ba :STRING,ch :STRING,is_new :STRING,md :STRING,mid :STRING,os :STRING,sid :STRING,uid :STRING,vc :STRING> COMMENT '公共信息',`page` STRUCT<during_time :STRING,item :STRING,item_type :STRING,last_page_id :STRING,page_id :STRING,from_pos_id :STRING,from_pos_seq :STRING,refer_id :STRING> COMMENT '页面信息',`actions` ARRAY<STRUCT<action_id:STRING,item:STRING,item_type:STRING,ts:BIGINT>> COMMENT '动作信息',`displays` ARRAY<STRUCT<display_type :STRING,item :STRING,item_type :STRING,`pos_seq` :STRING,pos_id :STRING>> COMMENT '曝光信息',`start` STRUCT<entry :STRING,first_open :BIGINT,loading_time :BIGINT,open_ad_id :BIGINT,open_ad_ms :BIGINT,open_ad_skip_ms :BIGINT> COMMENT '启动信息',`err` STRUCT<error_code:BIGINT,msg:STRING> COMMENT '错误信息',`ts` BIGINT  COMMENT '时间戳'
) COMMENT '活动信息表'PARTITIONED BY (`dt` STRING)ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
LOCATION '/warehouse/gmall/ods/ods_log_inc/'
TBLPROPERTIES ('compression.codec'='org.apache.hadoop.io.compress.GzipCodec');set hive.exec.dynamic.partition.mode=nonstrict;-- 装载数据: hdfs-> hive数仓数据源表
load data inpath '/origin_data/gmall/log/topic_log/2022-06-08' into table ods_log_inc partition(dt='2022-06-08');
load data inpath '/origin_data/gmall/log/topic_log/2022-06-09' into table ods_log_inc partition(dt='2022-06-09');
load data inpath '/origin_data/gmall/log/topic_log/2022-06-10' into table ods_log_inc partition(dt='2022-06-10');

业务表-活动信息表

-- 17张全量表DataX-TSV-1001 zhangsan 20,表结构和业务表保持一致即可
-- 13张增量表Maxwell-JSON-仅使用最外层的字段作为数据库列

尚硅谷资料里给出了30个建表语句

执行建表,执行以下载入语句

vim hdfs_to_ods_db.sh 

#!/bin/bashAPP=gmallif [ -n "$2" ] ;thendo_date=$2
else do_date=`date -d '-1 day' +%F`
fiload_data(){sql=""for i in $*; do#判断路径是否存在hadoop fs -test -e /origin_data/$APP/db/${i:4}/$do_date#路径存在方可装载数据if [[ $? = 0 ]]; thensql=$sql"load data inpath '/origin_data/$APP/db/${i:4}/$do_date' OVERWRITE into table ${APP}.$i partition(dt='$do_date');"fidonehive -e "$sql"
}case $1 in"ods_activity_info_full")load_data "ods_activity_info_full";;···················"all")load_data "ods_activity_info_full" "ods_activity_rule_full" "ods_base_category1_full" "ods_base_category2_full" "ods_base_category3_full" "ods_base_dic_full" "ods_base_province_full" "ods_base_region_full" "ods_base_trademark_full" "ods_cart_info_full" "ods_coupon_info_full" "ods_sku_attr_value_full" "ods_sku_info_full" "ods_sku_sale_attr_value_full" "ods_spu_info_full" "ods_promotion_pos_full" "ods_promotion_refer_full" "ods_cart_info_inc" "ods_comment_info_inc" "ods_coupon_use_inc" "ods_favor_info_inc" "ods_order_detail_inc" "ods_order_detail_activity_inc" "ods_order_detail_coupon_inc" "ods_order_info_inc" "ods_order_refund_info_inc" "ods_order_status_log_inc" "ods_payment_info_inc" "ods_refund_payment_inc" "ods_user_info_inc";;
esac

DIM层!!!

DIM层设计要点:

(1)DIM层的设计依据是维度建模理论,该层存储维度模型的维度表。

(2)DIM层的数据存储格式为orc列式存储+snappy压缩。

(3)DIM层表名的命名规范为dim_表名_全量表或者拉链表标识(full/zip)。

维度表是维度建模的基础和灵魂。前文提到,事实表紧紧围绕业务过程进行设计,而维度表则围绕业务过程所处的环境进行设计。维度表主要包含一个主键和各种维度字段,维度字段称为维度属性。

需要注意到,可能存在多个事实表与同一个维度都相关的情况,这种情况需保证维度的唯一性,即只创建一张维度表。(另外,如果某些维度表的维度属性很少,例如只有一个XX名称,则可不创建该维度表,而把该表的维度属性直接增加到与之相关的事实表中,这个操作称为维度退化。)

一个维度一张表,从实践来说,相关的维度设置一张表(性别、年龄)

商品维度表

DROP TABLE IF EXISTS dim_sku_full;
CREATE EXTERNAL TABLE dim_sku_full
(`id`                   STRING COMMENT 'SKU_ID',`price`                DECIMAL(16, 2) COMMENT '商品价格',`sku_name`             STRING COMMENT '商品名称',`sku_desc`             STRING COMMENT '商品描述',`weight`               DECIMAL(16, 2) COMMENT '重量',`is_sale`              BOOLEAN COMMENT '是否在售',`spu_id`               STRING COMMENT 'SPU编号',`spu_name`             STRING COMMENT 'SPU名称',`category3_id`         STRING COMMENT '三级品类ID',`category3_name`       STRING COMMENT '三级品类名称',`category2_id`         STRING COMMENT '二级品类id',`category2_name`       STRING COMMENT '二级品类名称',`category1_id`         STRING COMMENT '一级品类ID',`category1_name`       STRING COMMENT '一级品类名称',`tm_id`                  STRING COMMENT '品牌ID',`tm_name`               STRING COMMENT '品牌名称',`sku_attr_values`      ARRAY<STRUCT<attr_id :STRING,value_id :STRING,attr_name :STRING,value_name:STRING>> COMMENT '平台属性',`sku_sale_attr_values` ARRAY<STRUCT<sale_attr_id :STRING,sale_attr_value_id :STRING,sale_attr_name :STRING,sale_attr_value_name:STRING>> COMMENT '销售属性',`create_time`          STRING COMMENT '创建时间'
) COMMENT '商品维度表'PARTITIONED BY (`dt` STRING)STORED AS ORCLOCATION '/warehouse/gmall/dim/dim_sku_full/'TBLPROPERTIES ('orc.compress' = 'snappy');
-- 装载数据-- load-- save
-- 内存不够解决办法!
-- set hive.auto.convert.join=false;
-- set hive.ignore.mapjoin.hint=false;selectsku.`id`                   ,--STRING COMMENT 'SKU_ID',`price`                ,--DECIMAL(16, 2) COMMENT '商品价格',`sku_name`             ,--STRING COMMENT '商品名称',`sku_desc`             ,--STRING COMMENT '商品描述',`weight`               ,--DECIMAL(16, 2) COMMENT '重量',`is_sale`              ,--BOOLEAN COMMENT '是否在售',`spu_id`               ,--STRING COMMENT 'SPU编号',`spu_name`             ,--STRING COMMENT 'SPU名称',`category3_id`         ,--STRING COMMENT '三级品类ID',`category3_name`       ,--STRING COMMENT '三级品类名称',`category2_id`         ,--STRING COMMENT '二级品类id',`category2_name`       ,--STRING COMMENT '二级品类名称',`category1_id`         ,--STRING COMMENT '一级品类ID',`category1_name`       ,--STRING COMMENT '一级品类名称',`tm_id`                ,--STRING COMMENT '品牌ID',`tm_name`              ,--STRING COMMENT '品牌名称',`sku_attr_values`      ,`sku_sale_attr_values` ,`create_time`          -- STRING COMMENT '创建时间'
from(select`id`                  ,--STRING COMMENT 'SKU_ID',`price`               ,--DECIMAL(16, 2) COMMENT '商品价格',`sku_name`            ,--STRING COMMENT '商品名称',`sku_desc`            ,--STRING COMMENT '商品描述',`weight`              ,--DECIMAL(16, 2) COMMENT '重量',`is_sale`             ,--BOOLEAN COMMENT '是否在售',`spu_id`              ,--STRING COMMENT 'SPU编号',
--     `spu_name`            ,--STRING COMMENT 'SPU名称',`category3_id`        ,--STRING COMMENT '三级品类ID',
--     `category3_name`      ,--STRING COMMENT '三级品类名称',
--     `category2_id`        ,--STRING COMMENT '二级品类id',
--     `category2_name`      ,--STRING COMMENT '二级品类名称',
--     `category1_id`        ,--STRING COMMENT '一级品类ID',
--     `category1_name`      ,--STRING COMMENT '一级品类名称',`tm_id`               ,--STRING COMMENT '品牌ID',
--     `tm_name`             ,--STRING COMMENT '品牌名称',`create_time`         --STRING COMMENT '创建时间'
from ods_sku_info_full
where dt='2022-06-08') skujoin (selectid,spu_name
from ods_spu_info_full
where dt='2022-06-08'
)spu on sku.spu_id=spu.idjoin (selectid,tm_name
from ods_base_trademark_full
where dt='2022-06-08'
) tm on sku.tm_id=tm.idjoin (selectid,name `category3_name`,category2_id
from ods_base_category3_full
where dt='2022-06-08'
)tem3 on sku.category3_id=tem3.idjoin (
selectid,name `category2_name`,category1_id
from ods_base_category2_full
where dt='2022-06-08'
)tem2 on tem3.category2_id=tem2.idjoin (
selectid,name `category1_name`
from ods_base_category1_full
where dt='2022-06-08'
)tem on tem2.category1_id=tem.idleft join (selectsku_id,collect_list(named_struct("attr_id",attr_id,"value_id",value_id,"attr_name",attr_name,"value_name",value_name)) `sku_attr_values`
from ods_sku_attr_value_full
where dt='2022-06-08'
group by sku_id
) sav on sku.id=sav.sku_idleft join (
selectsku_id,collect_list(named_struct("sale_attr_id",sale_attr_id,"sale_attr_value_id",sale_attr_value_id,"sale_attr_name",sale_attr_name,"sale_attr_value_name",sale_attr_value_name)) `sku_sale_attr_values`
from ods_sku_sale_attr_value_full
where dt='2022-06-08'
group by sku_id
) ssav on sku.id=ssav.sku_id;

省略。。。。。。。。。

用户维度表 dim_user_zip

如果进行每天的全量备份,占用空间过大,需要采取拉链表(压缩)的方式

离线数据仓库的计算周期通常为每天一次,所以可以每天保存一份全量的维度数据。这种方式的优点和缺点都很明显。
优点是简单而有效,开发和维护成本低,且方便理解和使用。
缺点是浪费存储空间,尤其是当数据的变化比例比较低时,造成重复 重复。

拉链表适合于:数据会发生变化,但是变化频率并不高的维度(即:缓慢变化维)比如:用户信息会发生变化,但是每天变化的比例不高。如果数据量有一定规模,按照每日全量的方式保存效率很低。比如:1亿用户*365天,每天一份用户信息。(做每日全量效率低)

DWD层

。。。。。。。。。。。。

用脚本导入到mysql,使用superset可视化

整体复盘

2022-06-08数仓上线首日,准备数据时需要启动hadoop、zk、ka,关掉maxwell用不上

打开3个flume通道

生成6.4-6.7的数据,删掉这几天的日志,不需要上线前的日志

生成6.8的日志与业务数据

通过生成datax配置将全量数据导入hdfs

清空maxwell,用maxwell boot初始化增量数据到kafka,f3拉取到hdfs

可以开始数仓内容

装载log、db,一系列逻辑分析之后,通过生成的datax配置到mysql可视化就行了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/266006.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mongo之常用数据库操作

目录 一、准备环境 二、日常记录及执行示范 连接数据库查询版本查询表总数模糊查询(使用正则)查询文档中数据条数排序大于等于查询有哪些库时间查询不在条件内的查询复制数据更新字段名称删除数据库 四、高阶查询 五、备份迁移数据库 总结 一、准备环境 借鉴&#xff1a;…

【机器学习】特征选择之包裹式特征选择法

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…

C++基础知识(六:继承)

首先我们应该知道C的三大特性就是封装、继承和多态。 此篇文章将详细的讲解继承的作用和使用方法。 继承 一个类&#xff0c;继承另一个已有的类&#xff0c;创建的过程 父类(基类)派生出子类(派生类)的过程 继承提高了代码的复用性 【1】继承的格式 class 类名:父类名 {}; 【…

分割回文串 复原IP地址 子集

131.分割回文串 力扣题目链接(opens new window) 给定一个字符串 s&#xff0c;将 s 分割成一些子串&#xff0c;使每个子串都是回文串。 返回 s 所有可能的分割方案。 示例: 输入: "aab" 输出: [ ["aa","b"], ["a","a"…

消息队列RabbitMQ

消息队列 一、起源二、原理预取值死信队列死信 延迟队列应用场景 三、用法 一、起源 消息队列简称MQ(Message Queue)。 假设有一个简单的订单处理系统&#xff0c;涉及三个业务&#xff1a;订单提交、库存更新和支付处理。 如果没有消息队列&#xff0c;订单处理系统可能会按…

nginx(三)实现反向代理客户端 IP透传

正常情况下&#xff0c;客户端去访问代理服务器&#xff0c;然后代理服务器再取访问真实服务器&#xff0c;在真实服务器上&#xff0c;只能显示代理服务器的ip地址&#xff0c;而不显示客户端的ip地址&#xff0c;如果想让客户端的ip地址也能在真实服务端看见&#xff0c;这一…

matlab实现不同窗滤波器示例

1 汉明窗低通滤波器 &#xff1a; 在Matlab中使用汉明窗设计低通滤波器可以通过fir1函数实现。汉明窗通常用于设计滤波器&#xff0c;可以提供更突出的频率特性。 下面是一个示例代码&#xff0c;演示如何在Matlab中使用汉明窗设计低通滤波器&#xff1a; % 定义滤波器参数 fs …

景联文科技:引领战场数据标注服务,赋能态势感知升级

自21世纪初&#xff0c;信息化战争使战场环境变得更为复杂和难以预测&#xff0c;持续涌入的海量、多样化、多来源和高维度数据&#xff0c;加大了指挥员的认知负担&#xff0c;使其需要具备更强的数据处理能力。 同时&#xff0c;计算机技术和人工智能技术的飞速发展&#xff…

机试指南:Ch5:线性数据结构 Ch6:递归与分治

文章目录 第5章 线性数据结构1.向量 vector2.队列 queue(1)队列的特点、应用(2)基本操作(3)例题例题1&#xff1a;约瑟夫问题2 &#xff08;难度&#xff1a;中等&#xff09; (4)习题习题1&#xff1a;排队打饭 &#xff08;难度&#xff1a;中等&#xff09; 3.栈 stack(1)栈…

进程的通信以及信号的学习

一&#xff0c;进程的通信&#xff1a; 种类&#xff1a;1.管道 2.信号 3.消息队列 4.共享内存 5.信号灯 6.套接字 1.管道: 1.无名管道 无名管道只能用于具有亲缘关系的进程间通信 pipe int pipe(int pipefd[2]); 功能: 创建一个无名管道 …

NodeJS安装

1. NodeJS官网下载与安装 链接 2. 查看NodeJS安装版本 &#xfeff; 3. 查看npm版本 &#xfeff; 4.vscode安装4 &#xfeff;https://code.visualstudio.com/

亚马逊自养号测评:如何安全搭建环境,有效规避风险

要在亚马逊上进行自养号测评&#xff0c;构建一个真实的国外环境至关重要。这包括模拟国外的服务器、IP地址、浏览器环境&#xff0c;甚至支付方式&#xff0c;以创建一个完整的国际操作环境。这样的环境能让我们自由注册、养号并下单&#xff0c;确保所有操作均符合国际规范。…

vue3+vite+ts配置多个代理并解决报404问题

之前配置接口代理总是报404,明明接口地址是对的但还是报是因数写法不对;用了vue2中的写法 pathRewrite改为rewrite 根路径下创建env文件根据自己需要名命 .env.development文件内容 # just a flag ENVdevelopment# static前缀 VITE_APP_PUBLIC_PREFIX"" # 基础模块…

xlive.dll文件丢失了要怎么处理?快速修复xlive.dll的方法

涉及到Windows系统上运行游戏或应用程序时&#xff0c;xlive.dll文件丢失可能成为一个影响体验的常见错误。这个DLL&#xff08;动态链接库&#xff09;文件是Microsoft Games for Windows LIVE的一部分&#xff0c;对于确保很多游戏和程序能够正常运行至关重要。如果您在尝试启…

如何运行github上的项目

为了讲明白这个过程&#xff0c;特意做了一个相对来说比较好读懂的原理图&#xff0c;希望和我一样初学的小伙伴也能很快上手哈&#x1f60a; 在Github中找到想要部署的项目&#xff0c;这里以BartoszJarocki/CV&#xff08;线上简历&#x1f4c4;&#xff09;项目为例 先从头…

SQLSERVER 2014 删除数据库定时备份任务提示失败DELETE 语句与 REFERENCE 约束“FK_subplan_job_id“冲突

SQLSERVER 2014 删除数据库定时备份任务提示失败DELETE 语句与 REFERENCE 约束“FK_subplan_job_id“冲突 &#xff0c;错误如图&#xff1a; 问题原因&#xff1a;不能直接删除作业 任务&#xff0c;需要先删除计划里面的日志、删除代理作业、删除子计划以后才能删除作业。 解…

java面试(网络)

TCP和UDP有什么区别&#xff1f;TCP三次握手不是两次&#xff1f; TCP&#xff1a;面向连接&#xff0c;可靠的&#xff0c;传输层通信协议。点对点&#xff0c;占用资源多&#xff0c;效率低。 UDP&#xff1a;无连接&#xff0c;不可靠&#xff0c;传输层通信协议。广播&…

如何在Linux使用Docker部署Nexus容器并实现公网访问本地仓库【内网穿透】

文章目录 1. Docker安装Nexus2. 本地访问Nexus3. Linux安装Cpolar4. 配置Nexus界面公网地址5. 远程访问 Nexus界面6. 固定Nexus公网地址7. 固定地址访问Nexus Nexus是一个仓库管理工具&#xff0c;用于管理和组织软件构建过程中的依赖项和构件。它与Maven密切相关&#xff0c;可…

服务器数据恢复-异常断电导致服务器硬盘离线的数据恢复案例

服务器数据恢复环境&#xff1a; dell某型号服务器中有一组通过raid卡组建的raid10&#xff0c;该raid阵列中一共有4块磁盘。上层部署XenServer虚拟化平台&#xff0c;作为网站服务器使用。 服务器故障&#xff1a; 服务器异常断电导致服务器上的一台虚拟机不可用。需要恢复这…

SQL进阶(三):Join 小技巧:提升数据的处理速度

复杂数据结构处理&#xff1a;Join 小技巧&#xff1a;提升数据的处理速度 本文是在原本sql闯关的基础上总结得来&#xff0c;加入了自己的理解以及疑问解答&#xff08;by GPT4&#xff09; 原活动链接 用到的数据&#xff1a;链接 提取码&#xff1a;l03e 目录 1. 课前小问…