地图可视化绘制 | R-ggplot2 NC地图文件可视化

在推出两期数据分享之后,获取数据的小伙伴们也知道,数据格式都是NetCDF(nc) 格式网格数据,虽然我在推文分享中说明使用Python、R或者GIS类软件都是可以进行 处理和可视化绘制的,但是,还是有小伙伴咨询使用编程软件Python或者R处理nc数据,正好也想分享一期关于nc网格数据的可视化绘制过程,这里我们使用R包进行nc数据的处理(Python处理较为简单,将放在空间插值系列的资料中,该部分正在加快进程中哦~~),主要涉及的知识点如下:

  • nc数据文件的R包读取

  • nc数据的可视化绘制

  • 所有完整代码都已整理之我们的线上课程,有需要的同学+v yidianshuyulove 咨询

nc数据文件的R包读取

在R中读取nc文件,我们首选ncdf4包,其使用参考网址如下: *https://rdrr.io/cran/ncdf4/*。这里简单介绍下主要的函数:

  1. print.ncdf4: Print Information About a netCDF File(输出nc文件基本信息)。

  2. nc_open(): Open a netCDF File(打开nc文件)。

  3. ncvar_get(): Read data from a netCDF file(读取nc文件中变量数据)。

  4. ncatt_get(): Get attribute from netCDF file(获取ncw文件属性)。 对应nc文件,常用的使用方法就是以上4中,数据获取后(由于是规整的数据格式)可以像其他数据一样进行处理和变换。更多详细内容可参考上面给出的网站。

nc数据的可视化绘制

由于我们使用的是ggplot2进行绘制,所以我们直接使用raster包进行nc文件的读取(其实也是调用ncdf4包进行处理),数据我们就使用昨天分享数据的数据:数据(代码)分享 | 全球生物气候指标数据集。具体代码如下:

library(raster)
library(sf)
library(tidyverse)
library(RColorBrewer)
library(ggtext)
library(showtext)
library(hrbrthemes)nc01 <- "BIO34_CMCC_85_2040_79.nc"
dset01 <- raster(nc01)

结果如下:

ggplot2可视化绘制

在使用ggplot2进行绘制之前,我们需要将raster包读取的结果转换成data.frame,方便绘图:

dset01_df <- as.data.frame(dset01,xy = TRUE)
head(dset01_df)

可以看到数据还是有很多NA值的,这里我们选择将NA值删除,当然,你也可以不删除处理,代码如下(包含重命名):

dset01_df  <-  dplyr::rename(dset01_df,long = x,lat=y)
dset01_df_nona <- dset01_df %>% filter(!is.na(Potential.Evapotranspiration.Hargreaves))

结果如下:

接下来,我们就可以进行可视化设置了,这里直接给出绘图代码哈:

#自定义颜色
my_colormap <- colorRampPalette(rev(brewer.pal(11,'Spectral')))(32)
map <- ggplot() + geom_tile(data = dset01_df_nona, aes(x=long, y=lat, fill=Potential.Evapotranspiration.Hargreaves)) +borders(colour = "black",alpha=.8,size=.1) +#borders(colour = "black",fill="gray50",alpha=.4) +scale_fill_gradientn(colours = my_colormap,name="PEH(mm)") +labs(title = "Example of <span style='color:#D20F26'>BIO34 - Potential Evapotranspiration (PET, mm/y)</span>",subtitle = "processed map charts with <span style='color:#1A73E8'>geom_tile()</span>",caption = "Visualization by <span style='color:#DD6449'>DataCharm</span>") +theme_ipsum(base_family = "Roboto Condensed") +theme(#plot.margin = grid::unit(c(0,0,0,0), "mm"), #去除图片保存的留白问题plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",size = 20, margin = margin(t = 1, b = 12)),plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=15),plot.caption = element_markdown(face = 'bold',size = 12),)

可视化结果如下:

当然我们也可以更换颜色条颜色,可视化效果如下:

此外,我们还可以设置不同投影的可视化绘制效果:结果如下:

注意:这里我们通过如下代码设置了颜色柱(colorbar)的长宽等属性

legend.text = element_text(color = "black",size = 11),
legend.key.width = unit(5.2, "mm"),
legend.key.height = unit(12, "mm")

倒是要想获取数据资料分享中的可视化效果,我们需使用sf包对数据进行投影转换及使用*geom_sf()*进行转换结果的可视化绘制,代码如下:

df_sf <- sf::st_as_sf(dset01_df, coords = c("long", "lat"), crs = 4326) %>%sf::st_transform(crs = "+proj=robin")jet.colors <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))ggplot() + #borders(colour = "black",fill="gray50",alpha=.5,) +geom_sf(data = df_sf_nona,aes(color=Potential.Evapotranspiration.Hargreaves),size=.08) +borders(colour = "black",alpha=1,size=.1) +scale_color_gradientn(colors = jet.colors(7),name="PEH(mm)")+#添加经纬度线scale_x_continuous(breaks = seq(-180, 180, by = 30)) +scale_y_continuous(breaks = c(seq(-80, 80, by = 20), 85)) + labs(x="",y="",title = "Example of <span style='color:#D20F26'>BIO34-Potential Evapotranspiration (PET, mm/y)</span>",subtitle = "processed map charts with <span style='color:#1A73E8'>geom_sf()</span>",caption = "Visualization by <span style='color:#DD6449'>DataCharm</span>") +theme_ipsum(base_family = "Roboto Condensed") +theme(#plot.margin = grid::unit(c(0,0,0,0), "mm"), #去除图片保存的留白问题plot.title = element_markdown(hjust = 0.5,vjust = .5,color = "black",size = 20, margin = margin(t = 1, b = 12)),plot.subtitle = element_markdown(hjust = 0,vjust = .5,size=15),plot.caption = element_markdown(face = 'bold',size = 12),#设置刻度大小axis.title = element_text(size=8),#设置图例属性legend.position = "bottom",legend.text = element_text(color = "black",size = 10),legend.key.width = unit(15, "mm"),legend.key.height = unit(4, "mm"))

最终的可视化效果如下:

有小伙伴可能会说“没有灰色的背景”,这里说下以下,我们在不删除NA值的情况下绘制就会有对应的灰色背景值,删除NA值后则没有。我们也放出没有删除NA值的可视化结果:

总结

这一期我们还是分享了可视化绘制技巧,希望对大家绘制空间nc网格数据有所帮助,而Python 处理及可视化的绘制操作打算和空间插值的放在一起,尝试使用视频的形式分享给大家~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/266752.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浅谈mysql mvcc

目录 前言 mvcc 是如何工作的&#xff1f; 数据的更新 前言 mvcc 与一个事物的隔离级别有关&#xff0c;未提交读永远读的是当前值&#xff0c;串行化是通过加锁实现&#xff0c;这两种隔离级别都与mvcc 没有任何关系。只要一提到mvcc应该想到的是读提交以及可重复读&#…

Spring八股 常见面试题

什么是Spring Bean 简单来说&#xff0c;Bean 代指的就是那些被 IoC 容器所管理的对象。我们需要告诉 IoC 容器帮助我们管理哪些对象&#xff0c;这个是通过配置元数据来定义的。配置元数据可以是 XML 文件、注解或者 Java 配置类。 将一个类声明为 Bean 的注解有哪些? Com…

【buuctf-gakki】

binwalk 查看图片&#xff0c;发现有 rar 文件&#xff0c;提取后如上图所示&#xff08;flag.txt为已经解压后出来的&#xff09;其中这个 rar 需要用 archpr爆破一下 打开后一个 flag.txt 一堆杂乱无章的字符&#xff0c;需要用到 python 脚本进行词频统计&#xff0c;我们…

Vue3 在SCSS中使用v-bind

template 先创建一个通用的页面结构 <template><div class"v-bubble-bg"></div> </template>js 在JS中先对需要用的数据进行定义&#xff1a; 可以是参数&#xff0c;也可以是data <script setup>const props defineProps({bgCol…

设计模式系列文章-7个创建型模式更新已完结

其实从2019年开始就有些一套关于设计模式的系列文章&#xff0c;但是因为种种原因一直搁置到现在。直到2024年才又恢复更新。 24年1月份上旬一直在弄博客站&#xff1a;https://jaune162.blog 的搭建 24年1月份下旬弄专题站&#xff1a;https://books.jaune162.blog 的搭建。…

本地写的Bash脚本,Linux端运行报错:/bin/bash^M: bad interpreter: No such file or directory

背景 在本地写了个Bash Shell脚本&#xff0c;但上传到Linux端后加完权限执行时报错&#xff1a; &#xff08;脚本名&#xff1a;script.sh&#xff09; -bash: ./script.sh: /bin/bash^M: bad interpreter: No such file or directory 分析 这个错误通常是由于脚本文件的行…

beets,一个有趣的 Python 音乐信息管理工具!

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站AI学习网站。 目录 前言 什么是Beet库&#xff1f; 安装Beet库 使用Beet库 Beet库的功能特性 1. 多种音乐格式支持 2. 自动标签识…

LNMP架构介绍及配置--部署Discuz社区论坛与wordpress博客

一、LNMP架构定义 1、LNMP定义 LNMP&#xff08;Linux Nginx Mysql Php&#xff09;是指一组通常一起使用来运行动态网站或者服务器的自由软件名称首字母缩写&#xff1b;Linux系统下NginxMySQLPHP这种网站服务器架构。 Linux是一类Unix计算机操作系统的统称&#xff0c;是目…

力扣2月最后三天的每日一题

力扣2月最后三天的每日一题 前言2867.统计树中的合法路径数目思路确定1e5中的质数统计每个点的连接情况开始对质数点进行处理完整代码 2673.使二叉树所有路径值相等的最小代价思路完整代码 2581.统计可能的树根数目思路建立连通关系将猜测数组变为哈希表&#xff0c;方便查询利…

利用 Python 抓取数据探索汽车市场趋势

一、引言 随着全球对环境保护意识的增强和技术的进步&#xff0c;新能源汽车作为一种环保、高效的交通工具&#xff0c;正逐渐受到人们的关注和青睐。在这个背景下&#xff0c;对汽车市场的数据进行分析和研究显得尤为重要。 本文将介绍如何利用 Python 编程语言&#xff0c;结…

STM32标准库——(14)I2C通信协议、MPU6050简介

1.I2C通信 I2C 通讯协议(Inter&#xff0d;Integrated Circuit)是由Phiilps公司开发的&#xff0c;由于它引脚少&#xff0c;硬件实现简单&#xff0c;可扩展性强&#xff0c; 不需要USART、CAN等通讯协议的外部收发设备&#xff0c;现在被广泛地使用在系统内多个集成电路(IC)间…

BCN-活性酯,BCN-活性酯,可用于合成双环壬酮功能化聚乙二醇聚合物涂层

您好&#xff0c;欢迎来到新研之家 文章关键词&#xff1a;1516551-46-4&#xff0c;BCN-NHS&#xff0c; BCN-NHS 酯&#xff0c;BCN-活性酯&#xff0c;BCN-succinimidylester&#xff0c;丙烷环辛炔-活性酯&#xff0c;BCN-琥珀酰亚胺酯 一、基本信息 【产品简介】&#…

JetPack 5.1编译mish_cuda

1.查看jetpack版本:sudo jtop 自带的就有cuda11.4和cudnn8.X以及python3.8,我的cudnn就没有是后期自己安装的 2.安装torch PyTorch for Jetson - Announcements - NVIDIA Developer Forums 选择对应的cuda版本和torch版本,我下载的是:torch-2.1.0a0+41361538.nv23.06-cp…

初学HTMLCSS——盒子模型

盒子模型 盒子&#xff1a;页面中所有的元素&#xff08;标签&#xff09;&#xff0c;都可以看做是一个 盒子&#xff0c;由盒子将页面中的元素包含在一个矩形区域内&#xff0c;通过盒子的视角更方便的进行页面布局盒子模型组成&#xff1a;内容区域&#xff08;content&…

深度学习-神经网络原理

文章目录 神经网络原理1.单层神经网络1.1 回归单层神经网络&#xff1a;线性回归1.2 二分类单层神经网络&#xff1a;sigmoid与阶跃函数 1.3 多分类单层神经网络&#xff1a;softmax回归 神经网络原理 人工神经网络&#xff08;Artificial Neural Network&#xff0c;ANN&…

MYSQL02高级_目录结构、默认数据库、表文件、系统独立表空间

文章目录 ①. MySQL目录结构②. 查看默认数据库③. MYSQL5.7和8表文件③. 系统、独立表空间 ①. MySQL目录结构 ①. 如何查看关联mysql目录 [rootmysql8 ~]# find / -name mysql /var/lib/mysql /var/lib/mysql/mysql /etc/selinux/targeted/tmp/modules/100/mysql /etc/seli…

【Golang】Golang使用embed加载、打包静态资源文件

【Golang】Golang使用embed加载、打包静态资源文件 大家好 我是寸铁&#x1f44a; 总结了一篇Golang使用embed加载静态资源文件的文章✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 前言 事情是这样的&#xff1a;前不久&#xff0c;有同学问我,golang怎么把静态资源文件打包成一…

centos7升级openssl_3

1、查看当前openssl版本 openssl version #一般都是1.几的版本2、下载openssl_3的包 wget --no-check-certificate https://www.openssl.org/source/old/3.0/openssl-3.0.3.tar.gz#解压 tar zxf openssl-3.0.3.tar.gz#进入指定的目录 cd openssl-3.0.33、编译安装遇到问题缺…

C语言:编译与链接

C语言&#xff1a;编译 & 链接 环境翻译环境 编译预处理编译汇编 链接 环境 对C语言而言&#xff0c;生成程序的过程中存在两种环境&#xff1a;翻译环境与运行环境。 翻译环境 在翻译环境中&#xff0c;源代码会被转化为可执行的机器指令。这个过程会分为编译与链接两大…

SQL-Labs靶场“26-28”关通关教程

君衍. 一、二十六关 基于GET过滤空格以及注释报错注入1、源码分析2、绕过思路3、updatexml报错注入 二、二十六a关 基于GET过滤空格注释字符型注入1、源码分析2、绕过思路3、时间盲注 三、二十七关 基于union及select的过滤单引号注入1、源码分析2、绕过思路3、联合查询注入4、…