利用 Python 抓取数据探索汽车市场趋势

亿牛云IP (2).png
一、引言
随着全球对环境保护意识的增强和技术的进步,新能源汽车作为一种环保、高效的交通工具,正逐渐受到人们的关注和青睐。在这个背景下,对汽车市场的数据进行分析和研究显得尤为重要。
本文将介绍如何利用 Python 编程语言,结合网络爬虫技术,从汽车之家网站抓取数据,并通过数据分析和可视化来探索汽车市场的趋势和特点。我们将详细讨论采集工具的选择、采集流程设计以及代码实现示例,并最终展示结果与分析。
二、采集工具选择
在选择采集工具时,我们需要考虑到网站的结构、数据的格式以及采集的稳定性和效率。针对静态网页的数据采集,常用的工具包括 Python 的 requests 库和 BeautifulSoup 库;而对于动态网页,则需要使用 Selenium 等工具。
三、采集流程设计

  1. 确定采集目标: 确定需要采集的数据类型和内容,如汽车品牌、型号、价格、评分等。
  2. 确定采集URL: 分析汽车之家网站的结构,确定需要访问的页面URL。
  3. 发送HTTP请求: 使用 requests 库向目标URL发送HTTP请求,获取页面内容。
  4. 解析HTML页面: 使用 BeautifulSoup 库解析HTML页面,提取所需数据。
  5. CSS选择器或jQuery选择器: 使用 CSS 选择器或 jQuery 选择器定位和提取页面中的具体元素。
  6. 异常处理和日志记录: 添加异常处理机制,确保程序稳定运行,并记录日志以便后续排查问题。

四、代码实现示例
下面是一个简单的 Python 代码示例,用于从汽车之家网站抓取汽车品牌、价格和评分等数据:

import requests
from bs4 import BeautifulSoup# 设置代理信息
proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"# 设置代理
proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {"host": proxyHost,"port": proxyPort,"user": proxyUser,"pass": proxyPass,
}proxies = {"http": proxyMeta,"https": proxyMeta,
}url = 'http://www.autohome.com.cn/xxx'  # 替换为汽车之家网站的实际链接try:response = requests.get(url, proxies=proxies)response.raise_for_status()  # 检查请求是否成功soup = BeautifulSoup(response.text, 'html.parser')# 解析页面,获取所需数据data_list = []cars = soup.find_all('div', class_='car-info')for car in cars:brand = car.find('h4').textprice = car.find('div', class_='price').textscore = car.find('span', class_='score').textdata_list.append([brand, price, score])# 将数据保存到CSV文件中import csvwith open('autohome_data.csv', 'w', encoding='utf-8', newline='') as file:writer = csv.writer(file)writer.writerow(['品牌', '价格', '评分'])writer.writerows(data_list)print("数据抓取成功并保存到autohome_data.csv文件中!")except Exception as e:print("数据抓取失败:", e)

五、评估与优化

  1. 评估模型性能: 在进行数据分析之前,我们通常需要建立一个模型,以更好地理解数据的关系。在这个阶段,我们需要评估模型的性能,看它是否能够准确地反映出汽车市场的趋势。
  2. 优化模型性能: 如果模型的性能不尽如人意,我们可能需要进行优化。这包括调整模型的参数、尝试不同的算法,甚至进行特征工程,以提高模型的预测准确性。
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error# 假设 X 是特征,y 是目标变量
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 建立线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)# 模型评估
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)print(f'Mean Squared Error: {mse}')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/266738.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32标准库——(14)I2C通信协议、MPU6050简介

1.I2C通信 I2C 通讯协议(Inter-Integrated Circuit)是由Phiilps公司开发的,由于它引脚少,硬件实现简单,可扩展性强, 不需要USART、CAN等通讯协议的外部收发设备,现在被广泛地使用在系统内多个集成电路(IC)间…

BCN-活性酯,BCN-活性酯,可用于合成双环壬酮功能化聚乙二醇聚合物涂层

您好,欢迎来到新研之家 文章关键词:1516551-46-4,BCN-NHS, BCN-NHS 酯,BCN-活性酯,BCN-succinimidylester,丙烷环辛炔-活性酯,BCN-琥珀酰亚胺酯 一、基本信息 【产品简介】&#…

JetPack 5.1编译mish_cuda

1.查看jetpack版本:sudo jtop 自带的就有cuda11.4和cudnn8.X以及python3.8,我的cudnn就没有是后期自己安装的 2.安装torch PyTorch for Jetson - Announcements - NVIDIA Developer Forums 选择对应的cuda版本和torch版本,我下载的是:torch-2.1.0a0+41361538.nv23.06-cp…

初学HTMLCSS——盒子模型

盒子模型 盒子:页面中所有的元素(标签),都可以看做是一个 盒子,由盒子将页面中的元素包含在一个矩形区域内,通过盒子的视角更方便的进行页面布局盒子模型组成:内容区域(content&…

深度学习-神经网络原理

文章目录 神经网络原理1.单层神经网络1.1 回归单层神经网络:线性回归1.2 二分类单层神经网络:sigmoid与阶跃函数 1.3 多分类单层神经网络:softmax回归 神经网络原理 人工神经网络(Artificial Neural Network,ANN&…

MYSQL02高级_目录结构、默认数据库、表文件、系统独立表空间

文章目录 ①. MySQL目录结构②. 查看默认数据库③. MYSQL5.7和8表文件③. 系统、独立表空间 ①. MySQL目录结构 ①. 如何查看关联mysql目录 [rootmysql8 ~]# find / -name mysql /var/lib/mysql /var/lib/mysql/mysql /etc/selinux/targeted/tmp/modules/100/mysql /etc/seli…

【Golang】Golang使用embed加载、打包静态资源文件

【Golang】Golang使用embed加载、打包静态资源文件 大家好 我是寸铁👊 总结了一篇Golang使用embed加载静态资源文件的文章✨ 喜欢的小伙伴可以点点关注 💝 前言 事情是这样的:前不久,有同学问我,golang怎么把静态资源文件打包成一…

centos7升级openssl_3

1、查看当前openssl版本 openssl version #一般都是1.几的版本2、下载openssl_3的包 wget --no-check-certificate https://www.openssl.org/source/old/3.0/openssl-3.0.3.tar.gz#解压 tar zxf openssl-3.0.3.tar.gz#进入指定的目录 cd openssl-3.0.33、编译安装遇到问题缺…

C语言:编译与链接

C语言:编译 & 链接 环境翻译环境 编译预处理编译汇编 链接 环境 对C语言而言,生成程序的过程中存在两种环境:翻译环境与运行环境。 翻译环境 在翻译环境中,源代码会被转化为可执行的机器指令。这个过程会分为编译与链接两大…

SQL-Labs靶场“26-28”关通关教程

君衍. 一、二十六关 基于GET过滤空格以及注释报错注入1、源码分析2、绕过思路3、updatexml报错注入 二、二十六a关 基于GET过滤空格注释字符型注入1、源码分析2、绕过思路3、时间盲注 三、二十七关 基于union及select的过滤单引号注入1、源码分析2、绕过思路3、联合查询注入4、…

Unity(第十六部)声音和视频

声音 1、听声音 创建相机的时候,相机自带Audio Listener 多个相机的时候,我们只保留一个Audio Listener就可以 2、声音源,环境音 添加Audio Source就行中文叫声音源 3、脚本执行的声音 using System.Collections; using System.Collection…

itertools, 一个超好用的Python库

前言 Python用来处理迭代器的工具你想到了啥?itertools 就是一个特别有用的库,它提供了一系列用于创建和操作迭代器的工具,以下是10个常用的操作,可用在实际工作中,熟练掌握这些操作,将极大提升你在 Pytho…

数据可视化基础与应用-02-基于powerbi实现连锁糕点店数据集的仪表盘制作

总结 本系列是数据可视化基础与应用的第02篇,主要介绍基于powerbi实现一个连锁糕点店数据集的仪表盘制作。 数据集描述 有一个数据集,包含四张工作簿,每个工作簿是一张表,其中可以销售表可以划分为事实表,产品表&am…

生成式AI设计模式:综合指南

原文地址:Generative AI Design Patterns: A Comprehensive Guide 使用大型语言模型 (LLM) 的参考架构模式和心理模型 2024 年 2 月 14 日 对人工智能模式的需求 我们在构建新事物时,都会依赖一些经过验证的方法、途径和模式。对于软件工程师来说&am…

【前端素材】推荐优质后台管理系统 Adminity平台模板(附源码)

一、需求分析 1、系统定义 后台管理系统是一种用于管理网站、应用程序或系统的管理界面,通常由管理员和工作人员使用。它提供了访问和控制网站或应用程序后台功能的工具和界面,使其能够管理用户、内容、数据和其他各种功能。 2、功能需求 后台管理系…

k8s学习笔记-基础概念

(作者:陈玓玏) deployment特别的地方在于replica和selector,docker根据镜像起容器,pod控制容器,job、cronjob、deployment控制pod,job做离线任务,pod大多一次性的,cronj…

Unity | Shader基础知识(第十集:shader常用外部资产单词速成)

目录 一、外部资产简介 二、常用的外部资产单词 三、常用的外部资产单词和引入内部 四、图片资产外部调整的具体讲解 1.Tiling,中文:铺地砖 2.Offset,中文:偏移 五、作者的话 一、外部资产简介 在第六集中,我们…

旧衣回收小程序开发,提高回收效率增加创收

在我国经济大力发展下,国人的生活水平不断提高。生活质量得到提升,衣食住行也从而得到了提升。因此,家家户户中产生的闲置衣物开始增加,我国旧衣回收市场规模非常庞大。 当下,时代发展主流是以互联网为主,…

C# EF Core迁移数据库

现象: 在CodeFirst时,先写字段与表,创建数据库后,再添加内容 但字段与表会变更,比如改名删除增加等 需求: 当表字段变更时,同时变更数据库,执行数据库迁移 核心命令 Add-Migrat…

云计算 2月20号 (认识操作系统)

1、认识操作系统 计算机系统的组成 知识点1:没有软件系统的计算机称之为"裸机" 知识点2:裸机提供基本的可计算性资源 知识点3:操作系统是最靠近硬件的软件层,负责管理和控制计算机硬件。 计算机硬件组成五大部件 运算器…