10.轮廓系数-机器学习模型性能的常用的评估指标

轮廓系数(Silhouette Coefficient)是评估聚类算法效果的常用指标之一。它结合了聚类的凝聚度(Cohesion)和分离度(Separation),能够量化聚类结果的紧密度和分离度。

背景

1.聚类分析的背景

在数据挖掘和机器学习领域,聚类分析是一种常用的无监督学习方法,用于将数据集中的对象划分为具有相似特征的簇。聚类分析的目标是发现数据中的内在结构,将相似的数据点归为一类,并使不同类别之间的差异最大化。通过聚类,我们可以识别出数据中的模式、群集和关联,从而进行进一步的分析和决策制定。

2.评估聚类效果的需求

在进行聚类分析时,评估聚类效果是至关重要的。一个好的聚类结果应该具有以下特征:

簇内的样本应该尽可能相似。
不同簇之间应该尽可能不相似。

因此,我们需要一种评估指标来衡量聚类的紧密度和分离度,以便对不同的聚类结果进行比较,并选择最佳的聚类数目和算法。

3.轮廓系数的产生

轮廓系数是由Peter J. Rousseeuw 在1987年提出的。它的提出是为了克服传统的聚类评估方法的局限性,如仅仅依赖于簇内的均方差来评估聚类效果。轮廓系数的目的是同时考虑簇内和簇间的距离,从而提供更全面的聚类质量评估。轮廓系数是一种相对直观且易于理解的指标,它将聚类的紧密度和分离度结合在一起,提供了对聚类质量的综合评价。它的取值范围在-1到1之间,值越接近1表示聚类效果越好,值越接近-1表示聚类效果越差。

定义

轮廓系数通过计算每个数据点的轮廓系数来评估聚类的质量。轮廓系数的计算基于以下两个因素:

  1. 簇内相似度(凝聚度)(a):数据点与同一簇内其他点的平均距离。它衡量了数据点与其所属簇的紧密程度。

  2. 簇间不相似度(分离度)(b):数据点与其最近的不同簇的所有点的平均距离。它衡量了数据点与其他簇的分离程度。

计算过程

对于每个数据点i,其轮廓系数 s i s_i si​可以通过以下公式计算:

在这里插入图片描述

其中,

a i a_i ai​ 是数据点i与其所属簇内其他点的平均距离。
b i b_i bi​ 是数据点i与最近的不同簇中所有点的平均距离。

对于整个数据集,轮廓系数SS是所有数据点的轮廓系数的平均值。

解释

轮廓系数的取值范围在-1到1之间。
当轮廓系数接近1时,表示簇内相似度高,簇间不相似度低,聚类效果好。
当轮廓系数接近0时,表示簇内相似度和簇间不相似度相当,聚类效果一般。
当轮廓系数接近-1时,表示簇内相似度低,簇间不相似度高,聚类效果差。

优缺点

优点:能够同时考虑簇内和簇间的距离,提供了对聚类质量的全面评估。易于理解和计算,适用于各种类型的聚类算法。缺点:对聚类形状和密度不敏感,可能无法有效地处理非凸形状的簇或密度不均匀的簇。受到数据集不均衡的影响,可能导致评估结果不准确。

应用

轮廓系数广泛应用于各种聚类算法的性能评估和比较,如K均值聚类、层次聚类、DBSCAN等。它也被用于确定最佳的聚类数目和帮助解释聚类结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/268279.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯算法题汇总

一.线性表:链式 例题:旋转链表 二.栈: 例题:行星碰撞问题 三.队列 三.数组和矩阵 例题: 四.哈希表 五.二叉树 主要方法是递归 主要考察点是遍历:前序,中序,后序遍历,层…

C习题002:澡堂洗澡

问题 输入样例 在这里给出一组输入。例如&#xff1a; 2 5 1 3 3 2 3 3 输出样例 在这里给出相应的输出。例如&#xff1a; No代码长度限制 16 KB 时间限制 400 ms 内存限制 64 MB 栈限制 8192 KB 代码 #include<stdio.h> int main() {int N,W,s,t,p;int arr_s[…

解决:Information:java: javacTask: 源发行版 8 需要目标发行版 1.8

解决&#xff1a;Information:java: javacTask: 源发行版 8 需要目标发行版 1.8 先点击 Project Structure 查看jdk是否为1.8版本 我这jdk版本为1.8版本的&#xff0c;但还是运行还是报错 据以上错误显示以及上述配置&#xff0c;我选择的编译器是jdk1.8的&#xff0c;但是在i…

2.模拟问题——3.叠筐

【原题链接】 分析 题目含义 根据题目要求&#xff0c;即要将中心值放在正方形框正中心&#xff0c;然后依次轮换在外层围上另一个边缘值&#xff0c;围的时候边框要保证中心值和边缘值交替&#xff0c;所围图形保持为一个正方形&#xff0c;围完最后一圈后&#xff0c;需要…

【leetcode】用队列实现栈

大家好&#xff0c;我是苏貝&#xff0c;本篇博客带大家刷题&#xff0c;如果你觉得我写的还不错的话&#xff0c;可以给我一个赞&#x1f44d;吗&#xff0c;感谢❤️ 点击查看题目 思路: 在做此题之前&#xff0c;我们先要实现队列&#xff0c;这在上个博客中已经写过&#…

武器大师——操作符详解(下)

目录 六、单目操作符 七、逗号表达式 八、下标引用以及函数调用 8.1.下标引用 8.2.函数调用 九、结构体 9.1.结构体 9.1.1结构的声明 9.1.2结构体的定义和初始化 9.2.结构成员访问操作符 9.2.1直接访问 9.2.2间接访问 十、操作符的属性 10.1.优先性 10.2.结合性 …

JVM相关问题

JVM相关问题 一、Java继承时父子类的初始化顺序是怎样的&#xff1f;二、JVM类加载的双亲委派模型&#xff1f;三、JDK为什么要设计双亲委派模型&#xff0c;有什么好处&#xff1f;四、可以打破JVM双亲委派模型吗&#xff1f;如何打破JVM双亲委派模型&#xff1f;五、什么是内…

Day03:Web架构OSS存储负载均衡CDN加速反向代理WAF防护

目录 WAF CDN OSS 反向代理 负载均衡 思维导图 章节知识点&#xff1a; 应用架构&#xff1a;Web/APP/云应用/三方服务/负载均衡等 安全产品&#xff1a;CDN/WAF/IDS/IPS/蜜罐/防火墙/杀毒等 渗透命令&#xff1a;文件上传下载/端口服务/Shell反弹等 抓包技术&#xff1a…

随机生成验证码

随机生成验证码 需求&#xff1a;随机生成一个任意位的验证码包含数字、大写字母和小写字母 1.代码实现 package com.ham;import java.util.Random;public class case2 {public static void main(String[] args) {System.out.println(code(4));}public static String code(i…

Jvm之内存泄漏

1 内存溢出 1.1 概念 java.lang.OutOfMemoryError&#xff0c;是指程序在申请内存时&#xff0c;没有足够的内存空间供其使用&#xff0c;出现OutOfMemoryError。产生该错误的原因主要包括&#xff1a;JVM内存过小。程序不严密&#xff0c;产生了过多的垃圾。 程序体现: 内…

Java二叉树(1)

&#x1f435;本篇文章将对二叉树的相关概念、性质和遍历等知识进行讲解 一、什么是树 在讲二叉树之前&#xff0c;先了解一下什么是树&#xff1a;树是一种非线性结构&#xff0c;其由许多节点和子节点组成&#xff0c;整体形状如一颗倒挂的树&#xff0c;比如下图&#xff1…

1. vue3-环境准备

1、安装node.js 如果开发环境上面没有安装node.js&#xff0c;需要到node.js官方网站下载node.js。下载安装后&#xff0c;可以通过npm --version查看nodejs版本 2. 开发工具 开发工具建议使用vscode

C#,数值计算,求解微分方程的吉尔(Gear)四阶方法与源代码

1 微分方程 微分方程&#xff0c;是指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。 微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛&#xff0c;可以解决许多与导数…

Linux 学习笔记(8)

八、 启动引导 1 、 Linux 的启动流程 1) BIOS 自检 2) 启动 GRUB/LILO 3) 运行 Linux kernel 并检测硬件 4) 挂载根文件系统 5) 运行 Linux 系统的第一个进程 init( 其 PID 永远为 1 &#xff0c;是所有其它进程的父进程 ) 6) init 读取系统引导配置文件…

分布式基础 --- Leader election

分布式基础 --- Leader election 为什么需要leader electionRing electionBully Algorithm 为什么需要leader election 在一组集群中, 需要选出一个leader来承担一些特别的任务, 比如 协调和控制系统操作&#xff1a;领导者负责协调和控制整个分布式系统的操作。它可以接收和处…

46、WEB攻防——通用漏洞PHP反序列化原生类漏洞绕过公私有属性

文章目录 几种常用的魔术方法1、__destruct()2、__tostring()3、__call()4、__get()5、__set()6、__sleep()7、__wakeup()8、__isset()9、__unset()9、__invoke() 三种变量属性极客2019 PHPphp原生类 几种常用的魔术方法 1、__destruct() 当删除一个对象或对象操作终止时被调…

数据中心GPU集群高性能组网技术分析

数据中心GPU集群组网技术是指将多个GPU设备连接在一起&#xff0c;形成一个高性能计算的集群系统。通过集群组网技术&#xff0c;可以实现多个GPU设备之间的协同计算&#xff0c;提供更大规模的计算能力&#xff0c;适用于需要大规模并行计算的应用场景。 常用的组网技术&…

码垛工作站:食品生产企业的转型助推器

在当今高度自动化的工业生产中&#xff0c;码垛工作站的应用正逐渐成为一种趋势。某食品生产企业在面临市场竞争加剧、人工成本上升等多重压力下&#xff0c;决定引入码垛工作站&#xff0c;以期实现生产流程的升级与变革。 一、码垛工作站引入背景 该企业主要从事休闲食品的…

iMazing3安全吗?好不好用?值不值得下载

一、安全性 iMazing在设计和开发过程中&#xff0c;始终把用户数据的安全性放在首位。它采用了多种先进的安全技术来确保用户数据在传输、备份和存储过程中的安全。 iMazing3Mac-最新绿色安装包下载如下&#xff1a; https://wm.makeding.com/iclk/?zoneid49816 iMazing3Wi…

mysql 常用命令练习

管理表格从表中查询数据从多个表查询修改数据sql变量类型 管理表格 创建一个包含三列的新表 CREATE TABLE products (id INT,name VARCHAR(255) NOT NULL,price INT DEFAULT 0,PRIMARY KEY(id) // 自增 ); 从数据库中删除表 DROP TABLE product; 向表中添加新列 ALTER TAB…